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Preface

This book is meant to complement traditional textbooks by covering the

mathematics used in theoretical physics beyond that typically covered in

undergraduate math and physics courses. The idea is to provide an intu-

itive, visual overview of these mathematical tools, with guiding end goals

including but not limited to spinors and gauge theories.

What this book is, and what it is not

Because this is not a textbook, it is not designed around a traditional

course or a body of specialized research results. Instead, it is a reference

to help place such courses and research programs in a broader context. To

make clear the somewhat unusual viewpoint taken here, we give an explicit

enumeration of attributes. This book will focus on:

• Defining and visualizing concepts and relationships between them

• Stating related results and introducing related concepts for further study

• Explaining the jargon and alternative treatments found in the literature

The book will avoid:

• Historical motivations and attributions

• Proofs of theorems and derivations of results

• Tools for practical calculations

The idea is to take advantage of the reader’s intuitive ability to grasp a con-

cept through in most cases mathematically rigorous definitions, descriptive

pictures, and related results. Such an approach allows us to concisely cover

a large breadth of material, hopefully providing a cross-subject synthesis

while at the same time serving as a useful reference.

v

 



October 20, 2017 17:37 Mathematics for Physics 9in x 6in b3077 page vi

vi Preface

Of course there is no doubt that a certain level of insight only comes

through studying actual derivations or proofs; in particular, this is required

to obtain a clear understanding of why many of the results stated here follow

from the relevant definitions. Furthermore, any significant work using or

extending these ideas will require tools for calculation and exercises to build

facility with these tools. Thus the present book is meant as a companion

to textbooks that provide these attributes.

In this book we also go out of our way to avoid messy details, special

cases, and pathological exceptions. Our goal is to provide a unified pre-

sentation of core concepts so as to illuminate the assumptions and shared

structures used in our models of nature. To realize this goal, the presenta-

tion strives to be consistent and intuitive. Looking up a concept here should

wherever possible not only give a definition, but also place this definition

in context with related concepts.

It should also be mentioned that this book in no respect attempts to

be a comprehensive reference. In particular, a thin slice of the vast world

of mathematics has been selected, and definitions are not necessarily the

most general, the goal being coverage of structures and usage as commonly

found in theoretical physics. The path chosen through theoretical physics

itself reflects an end destination of theoretical particle physics, and thus

omits many other branches of study.

Who this book is written for

Many people in think in terms of pictures, and then perhaps translate

these pictures into equations in order to obtain concrete results. This book

is written for anyone who would like to explore this viewpoint in studying

(or teaching) theoretical physics.

The focus of most physics courses is on derivations of results and practice

in using calculational tools. In addition, historical development is often the

strongest organizing influence in presenting the material. The net result

is that the student can gain facility yet lack a top-down vision of struc-

ture, instead seeing the material built up as an ad-hoc series of definitions,

guesses, and leaps of faith. This is of course how the subject was devel-

oped historically, but a complementary bird’s-eye view can bring together

the details to form a more cohesive, and possibly more inspiring, picture of

exactly what is being said about nature.

For beginning graduate and advanced undergraduate students surveying

the field and choosing a specialty, the hope is that this approach will be
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especially helpful. In particular, with this book in hand, enough jargon may

be mapped to concepts to better digest survey papers and other literature

in theoretical physics.

In addition, each subject carries it’s own conventions, notation, and

domain of validity. An overview, presented in consistent language, can

help illuminate the relationships between different subjects and make clear

the common structures used across sub-fields. Sections of the book that

cover material not yet learned in detail can still be useful to the student as

preparation, introducing concepts and clearly demarcating the framework

which future study will flesh out.

Organization of the book

The book starts with generalizations of numbers (abstract algebra), moves

to shapes (topology), and then adds geometric structure until arriving at

fiber bundles. Each chapter attempts to cover the following items:

• Definitions of the main objects under study

• Visualizations of the objects and their relationships

• Related synonyms and jargon common to the literature

• Statements of relevant facts and theorems

Since it is intended partly as a reference, an attempt is made to keep each

section of the book as self-contained as possible. The topics are presented

in an order designed to minimize any references to future material, and to a

large extent this goal is attained. Nevertheless, the book is best read front

to back, and results covered in one section are referred to in the sections

that immediately follow without further comment.
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Notation

Standard notations

The following are standard symbols used in this book. Other symbols will

be defined as they are introduced, but the below relations and structures

will not be defined and are assumed to already be familiar.

∀a ∈ A, ∃b | ab = 0 For any element a ofA, there exists b such that ab = 0

{x | P (x)} The set of elements x that satisfy the relation P (x)

≡ Definition

= Equation derivable from given definitions

∝ Is proportional to

⊂, ⊆ Proper, improper subset, subgroup, etc.

∪, ∩ Union, intersection∑
,
∏

Sum, product(
n

k

)
The binomial coefficient n choose k

⇒, ⇔ Implies, is true iff (if and only if)

f : M → N Mapping f from M to N

m �→ n Mapping of an element m to an element n

T |p The value of a field T over M at a point p ∈M
c∗ Complex conjugate of the complex number c

N The natural numbers

Z The integers

Z
+ The positive integers

Zn The integers modulo n

R The real numbers

C The complex numbers

ix
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K A field, typically either the real or complex numbers

H The quaternions (AKA Hamilton’s quaternions)

O The octonions (AKA Cayley’s octonions)

R
n The n-dimensional real vector space

Dn The dimension n disk (AKA ball), all vectors of

length 1 or less in Rn

Sn The dimension n sphere, all vectors of length 1 in

Rn+1

T n The dimension n torus, the product of n circles

A,Aμ
ν Matrix, matrix element of row μ, column ν

AT , A†, I Matrix transpose, adjoint, identity

det(A), tr(A) Matrix determinant, trace

Defined notations

The following are symbols and conventions used for relations and structures

defined in this book. Most are reflective of notation commonly used by other

authors, but some are noted as particular to this book.

∼= Isomorphism (between algebraic objects), homeo-

morphism (between topological spaces), diffeomor-

phism (between differential manifolds), or isometry

(between Riemannian manifolds)

� Homotopy equivalency (between topological spaces)

1 Identity element in a monoid

0 The zero element in a ring

Ker, Im The kernel and image of a mapping

|G|; |g| Order of a group G or element g

Aut(X) The group of all automorphisms of X (group, space,

manifold, etc)

Inn(G) The group of all inner automorphisms of a group G

N �G N is a normal subgroup of G

G = N �H G is the semidirect product of a normal N and H

|G : H | Index of a group G over a subgroup H

Ge Identity component of a topological group

V ⊥ Orthogonal complement of a vector space V

V ∗ The dual space of V

δμν , δμν The Kronecker delta ≡ 1 if μ = ν, 0 otherwise
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ημν , ημν For a pseudo inner product of signature (r, s), ±1 if

μ = ν (with r positive values), 0 otherwise

T kV The kth tensor power of V

ΛkV The kth exterior power of V

Mn Manifold of dimension n

ΛkM Differential k-forms defined on a manifold M

TxM,TM Tangent space at x, tangent bundle on M

FM Frame bundle on M

Diff(M) The Lie group of diffeomorphisms of a manifold

vect(M) The Lie algebra of vector fields on a manifold

〈v, w〉 Inner product of two vectors

‖v‖ Norm

[u, v] Lie bracket

∗A Hodge star of A ∈ ΛkV

Ω Unit n-vector (non-standard)

Ã Reverse of a Clifford algebra element (in geometric

algebra)

V ×W Direct product of two vector spaces

V ⊕W Direct sum

V ∗W Free product

V ⊗W Tensor product

V ∧W Exterior product

Θ̌[∧]Ψ̌ Exterior product of Lie algebra valued forms using

the Lie commutator (non-standard)

Θ̌ ∧ Ψ̌ Exterior product of Lie algebra valued forms using

the multiplication of the related associative algebra

X × Y Product of two topological spaces

X ∨ Y Wedge sum of two spaces

X ∗ Y Join of two spaces

RPn Real projective n-space

Hn Real hyperbolic n-space
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Notation conventions

The following are symbols that are typically used to indicate specific types

of variables in this book. These conventions will not always be possible to

follow, but are as much as is practical.

G,H ; g, h Groups; elements of a group

φ Group homomorphism

R; r Ring; element of a ring

V,W ; v, w; a, b Vector spaces; elements of a vector space; scalars

in a vector space

v̂ Unit length vector in a normed vector space

ϕ, ψ Mappings or forms

	ϕ, 	ψ Vector-valued forms (non-standard)

Θ̌, Ψ̌ Algebra-valued forms (non-standard)

eμ, êμ Basis vectors or frame, orthonormal basis vectors

or frame

βμ, β̂μ Basis forms or dual frame, orthonormal basis forms

or dual frame

a, b Algebras

g, h Lie algebras

A,B Elements of an exterior, Lie, or Clifford algebra

T ab
c Tensor using abstract index notation

T μ1μ2
ν1 Tensor using component notation in a specific basis

X,Y Topological spaces

M,N Manifolds

E,P, F Fiber bundle, principal bundle, abstract fiber

Formatting

A concept is written in bold when first mentioned or defined. Also,

throughout the text two classes of comments are separated from the core

material by boxes:

� This box will indicate a warning concerning a common confusion or

easily misunderstood concept.

☼ This box will indicate an interpretation or heuristic view that helps

in understanding a particular concept.
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Chapter 1

Mathematical structures

1.1 Classifying mathematical concepts

Most of the mathematical concepts we will be covering will lie in two ar-

eas: algebra and geometry. In a very coarse breakdown of the mathematics

commonly used in physics, the remaining two broad areas would be foun-

dations and analysis, the basic concepts of which will be presumed to be

already familiar to the reader.
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Figure 1.1.1 A coarse breakdown of broad areas in mathematics.

• Algebra is principally concerned with sets and arithmetic operations.

• Geometry is concerned with spaces and properties that are preserved

under various transformations or equivalencies.

In our treatment, we will view algebra as a tool for revealing the structure

of geometric objects, which are our primary focus.

1
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2 Mathematical structures

1.2 Defining mathematical structures and mappings

Most any mathematical object can be viewed as a set of elements along

with a “structure.” In algebra this structure usually consists of equations

that relate the elements to each other, while in geometry the focus is more

on relations between subsets of the elements. For example Z2, the integers

modulo 2, is defined by the two elements {0, 1} and the equations 0 + 0 =

0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0.

We can also introduce the concept of mappings between sets with similar

structures. Types of mappings include:

• Homomorphism: preserves the structure (e.g. a homomorphism ϕ on

Z2 satisfies ϕ(g + h) = ϕ(g) + ϕ(h))

• Epimorphism: a homomorphism that is surjective (AKA onto)

• Monomorphism: a homomorphism that is injective (AKA one-to-one,

1-1, or univalent)

• Isomorphism: a homomorphism that is bijective (AKA 1-1 and onto);

isomorphic objects are equivalent, but perhaps defined in different ways

• Endomorphism: a homomorphism from an object to itself

• Automorphism: a bijective endomorphism (an isomorphism from an

object onto itself, essentially just a re-labeling of elements)
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Figure 1.2.1 Types of mappings between sets.

The concepts of sets and mappings can be generalized further, which

takes us from set theory to category theory. An overview of the most basic

ideas of category theory is presented in Appendix A. We will occasionally

use category theory terminology (object, class, category, morphism and

functor) to organize our presentation, but this topic is not necessary to

understanding the content of the book.
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Chapter 2

Abstract algebra

2.1 Generalizing numbers

Algebra is concerned with sets and operations on these sets. The most

common algebraic objects can be viewed as generalizations of the two most

familiar examples: the integers and real numbers under addition and multi-

plication. The generalization starts with a plain set and incrementally adds

the properties that define R, yielding objects with increasing structure.

Table 2.1.1 Generalizations of numbers.

Addition + Multiplication × Special features

Semigroup Associative

Monoid Associative Unique identity: 1a = a1 = a

Group Associative Inverses: aa−1 = a−1a = 1

Ring Abelian group Semigroup Zero: 0+ a = a⇒ a0 = 0

Integral

domain

Abelian group Abelian monoid No zero divisors

Field Abelian group Abelian monoid Inverses under × except for 0

Notes: a × b is denoted ab and the identity under × is 1 (other common
notations include I and e). For a ring the identity under + is denoted 0
and called zero. Abelian, AKA commutative, means ab = ba. The ring
operation × is distributive over +. No zero divisors means ab = 0 only if
a = 0 or b = 0.

� It is important to distinguish abstract operations and elements from

“ordinary” ones in a particular case. For example, the integers are a

5
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group over ordinary addition, so that a+ b could be written ab and 0

denoted 1 in a group context. On the other hand, abelian groups are

usually written using + as the operation instead of ×, with “integer

multiplication” defined as na ≡ a + a + · · · + a (n times); integer

multiplication should not be confused with the multiplication of a ring

structure, which may be different.

Immediate examples are the real numbers as a field, and the integers as

an integral domain; however, the integers are not a group under multiplica-

tion since only 1 has an inverse. Some further examples can help illuminate

the boundaries between these structures.

• Semigroup but not monoid: the positive reals less than 1 under multipli-

cation (no identity)

• Monoid but not group: the integers under multiplication (no inverses)

• Group but not abelian group: real matrices with non-zero determinant

under multiplication

• Abelian group: the integers or real numbers under addition

• Ring but not integral domain: the ring of integers mod n for n not prime

(zero divisor pq = n = 0)

• Integral domain but not field: the integers (no multiplicative inverses)

• Field: the real numbers; the complex numbers

A generating set of an algebraic object is a subset of elements that lead

to any other element via operations (e.g. +, ×). The subset generates the
object, and the elements in the subset are generators. An abelian group

is called finitely generated if it has a finite generating set.

2.1.1 Groups

Groups are one of the simplest and most prevalent algebraic objects in

physics. Geometry, which forms the foundation of many physical models,

is concerned with spaces and structures that are preserved under transfor-

mations of these spaces. At least one source of the prevalence of groups

in physics is the fact that if these transformations are automorphisms,

they naturally form a group under composition, called the automorphism

group (AKA symmetry group).

The group of automorphisms of a set is called the symmetric group.

For the finite set with n elements, the elements of the symmetric group Sn
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are called permutations, and any subgroup of Sn is called a permutation

group. The subgroup of all even permutations, i.e. permutations that are

obtained by an even number of element exchanges, is called the alternating

group An.

Some common group constructions include:

• Normalizer of a subgroup H of G: N(H) ≡ {
n ∈ G | nHn−1 = H

}
• Center of a group: Z(G) ≡ {z ∈ G | zg = gz ∀g ∈ G}
• Centralizer of a subgroup H of G:

C(H) ≡ {
c ∈ G | chc−1 = h ∀h ∈ H}

• Inner automorphism induced by a ∈ G: φa(g) ≡ aga−1

• Order of an element: |g| is the smallest n such that gn = 1 (may be

infinite)

• Order of a group: |G| is the number of elements in G (may be infinite)

• Torsion: Tor(G) ≡ elements of finite order; Tor(G) is a subgroup for

abelian G

• Torsion-free: Tor(G) = 1

Some of the more important theorems about finite groups include:

• Cayley’s theorem: every finite group is isomorphic to a group of per-

mutations

• Lagrange’s theorem: if H is a subgroup of G, |H | divides |G|
• Cauchy’s theorem: if p is a prime that divides |G| then G has an

element of order p

• The fundamental theorem of finite abelian groups: every finite

abelian group can be uniquely written as the direct product of copies

of the integers modulo prime powers, with the group operation applied

component-wise; i.e. every finite abelian group is of the form

Zp
n1
1
× Zp

n2
2
× · · · × Zp

nk
k

where pi are not necessarily distinct primes

This last theorem has many consequences, including:

• Any finitely generated abelian group can be written as above, but with

some number of Z components also present

• Any cyclic group (generated by a single element) is isomorphic to Zn

• |g| always divides |G|; all groups of prime order are of the form Zn

We do not discuss normal subgroups here; they will be covered in Section

2.4, “Dividing algebraic objects.”
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2.1.2 Rings

We can define some additional arithmetic generalizations for rings:

• Ring unity 1 (AKA identity): identity under multiplication; a ring with

unity is unital (AKA unitary)

• Ring unit (AKA invertible element): nonzero element a of commutative

ring with multiplicative inverse aa−1 = a−1a = 1

• Idempotent element: element a such that a2 = a

• Nilpotent element: there exists an integer n such that an = 0

• Ring characteristic: the least n ∈ Z+ such that na = 0 ∀a ∈ R; 0 if n

does not exist

� It is important to remember that a ring may not have an identity

(unity) or inverses under multiplication. However, it should also be

noted that “ring” is sometimes defined to include a unity.

As higher structure is added to a ring, it begins to severely constrain

its form:

• Every integral domain has characteristic 0 or prime

• Every finite integral domain is a field

• Every finite field is of the form Zpn , the integers modulo pn with p prime

We do not discuss ideals here, which are to rings as normal subgroups are

to groups, and so are also covered in Section 2.4.

2.2 Generalizing vectors

We can obtain further structure by generalizing the properties of vectors in

a Cartesian coordinate system. A vector space (AKA linear space) is the

algebraic abstraction of the relationships between Cartesian vectors, and it

is this structure that we formalize and build up to.
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Figure 2.2.1 The structure of Cartesian vectors.

Table 2.2.1 Generalizations of Cartesian vectors.

Vectors Scalars Scalar example

Left R-module Abelian group V Ring with unity R Real matrices

R-module Abelian group V Commutative ring R Integers

Vector space Abelian group V Field F Real numbers

Cartesian space R3 3-vectors R

Notes: The abelian group of vectors has elements denoted u, v, w, with
operation + and identity 0. The ring of scalars has elements denoted a, b, c,
with operations + and ×, and special elements 0 and 1.

For any scalar a and vector v, scalar multiplication defines a map to

another vector av such that:

• (ab)v = a(bv)

• (a+ b)v = av + bv

• a(v + w) = av + aw

• 1v = v

A left (right) module defines scalar multiplication only from the left (right),

while for the other structures scalar multiplication from either side is equiv-

alent. Modules allow us to generalize real scalars to rings of scalars that

lack multiplicative inverses. For example, any abelian group V can be made
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into a module over the ring of integers if we define av ≡ v + v + · · · + v

(a times). A module homomorphism, i.e. a map between modules that

preserves vector addition and scalar multiplication, is called linear.

Every vector space V has a basis, a linearly independent set of vectors

eμ whose linear combinations span all of V . The dimension of V is the

number of vectors in a basis. In a given basis a vector v can then be

expressed in terms of its components vμ:

v =
∑
μ

vμeμ ≡ vμeμ

Here the Einstein summation convention has been used, i.e. a repeated

index implies summation. A change of basis can be represented by a

matrix (a linear map):

e′μ = Aν
μeν

Viewed as ordered sequences of vectors, the bases of V can be split into

two classes, each class consisting of bases related by a change of basis with

positive determinant. A vector space orientation is then a choice of one

of these two classes.

� It is important to remember that a module may lack a basis or other

intuitive features of a vector space.

Over a given field there is a unique vector space (up to isomorphism)

of a given dimension; for example Rn is the only n-dimensional real vector

space. In this book we will almost exclusively consider vector spaces over

the fields of real or complex numbers. Such vector spaces can be obtained

from one another, as follows. The complexification of a real vector space,

denoted VC, substitutes complex scalars for real ones; thus the basis is left

unchanged. The decomplexification of a complex vector space W with

basis eμ removes the possibility of complex multiplication of scalars, thus

yielding a real vector spaceWR of twice the dimension with a basis {eμ, ieμ}.

2.2.1 Inner products of vectors

For a real or complex vector space V , we can generalize another Cartesian

structure, the inner product (AKA scalar product, dot product). We

define an inner product space as including a mapping from vectors to

scalars denoted 〈v, w〉 (also denoted (v, w), 〈v|w〉, or v · w). The mapping

must satisfy:
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• 〈v, w〉 = 〈w, v〉∗ where ∗ denotes complex conjugation

• 〈ax+ y, bz〉 = a∗b 〈x, z〉+ b 〈y, z〉
• 〈v, v〉 > 0 except if v = 0, in which case it vanishes

The first requirement implies that 〈v, v〉 is real, and that the inner product

is symmetric for real scalars. The second requirement can be phrased as

saying that the inner product is anti-linear in its first argument and lin-

ear in its second, or sesquilinear, and the first and second requirements

together define a Hermitian form. A real inner product is then bilinear

or multilinear, meaning linear in each argument. The third requirement

above makes the inner product positive definite.

� Sometimes the definitions of both inner product and sesquilinear

are reversed to make the second argument anti-linear instead of the

first. This is sometimes called the “mathematics” convention, while

ours would then be the “physics” convention.

Two vectors are defined to be orthogonal if their inner product van-

ishes. The orthogonal complement of a subspace W of V is the

subspace of all vectors orthogonal to every vector in W , i.e. W⊥ ≡
{v ∈ V | ∀w ∈ W 〈v, w〉 = 0}. A basis of W together with a basis for its

orthogonal complement W⊥ forms a basis for all of V .

2.2.2 Norms of vectors

In an inner product space, the norm (AKA length) of a vector is defined as

‖v‖ ≡√〈v, v〉, leading to common relations such as the Cauchy-Schwarz

inequality |〈v, w〉| ≤ ‖v‖ ‖w‖ and the triangle inequality (see below), and

letting us define the angle between vectors by cos θ ≡ 〈v, w〉 / (‖v‖ ‖w‖).
An inner product then defines a special class of bases, the orthonormal

bases êμ with 〈êμ, êν〉 = δμν (≡ 1 if μ = ν, 0 otherwise). If we then write

v = vμêμ and w = wμêμ, we have

〈v, w〉 =
∑
μ

vμ∗wμ = v†w,

where in the first expression we take the complex conjugate of the compo-

nents vμ, and the second is common in linear algebra, where we treat the

vectors as column matrices of components, and the inner product is formed

by matrix multiplication after taking the adjoint (hermitian conjugate) of

the first matrix.
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Alternatively, we can define a norm on a real vector space as a non-

negative real function that only vanishes for the zero vector and satisfies

‖av‖ = |a| ‖v‖ as well as the triangle inequality ‖v + w‖ ≤ ‖v‖ + ‖w‖.
This makes the space a real normed vector space. Existence of a norm

does not in general imply the existence of an inner product, but if a norm

satisfies the parallelogram identity

‖v + w‖2 + ‖v − w‖ 2 = 2
(‖v‖ 2 + ‖w‖ 2

)
,

an inner product can be obtained using the polarization identity

〈v, w〉 = (‖v + w‖ 2 − ‖v − w‖ 2
)
/4 =

(‖v‖ 2 + ‖w‖ 2 − ‖v − w‖ 2
)
/2.

2.2.3 Multilinear forms on vectors

In general, multilinear mappings from a vector space to scalars are called

“forms.” Here we define some forms with regard to the real vector space

R
n; more general definitions may exist in more general settings.

A form is completely symmetric if it is invariant under exchange

of any two vector arguments; it is completely anti-symmetric (AKA

alternating) if it changes sign under such an exchange. Some classes of

forms include:

• Bilinear form: a bilinear map from two vectors to R

• Multilinear form: generalizes the above to take any number of vectors

• Quadratic form: equivalent to a symmetric bilinear form: a quadratic

form is a homogeneous polynomial of degree two, i.e. every term has the

same number of variables, with no power greater than 2; by considering

the variables components of a vector, the polarization identity gives a 1-1

correspondence with symmetric bilinear forms.

• Algebraic form: generalization of the above to arbitrary degree; equiv-

alent to a completely symmetric multilinear form

• 2-form: an anti-symmetric bilinear form

• Exterior form: a completely anti-symmetric multilinear form; exterior

forms will be revisited in Section 3.3 from a different perspective.

A real inner product is thus a positive definite quadratic form, and is the

generalization to arbitrary dimension of the geometrically defined dot prod-

uct in R
3. In the context of manifolds (see Chapter 6), an inner product

is called a metric; and in the context of spacetime, variants of the inner

product carry specific terminology. We will cover this terminology in the

following.
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The positive definite definition of a real inner product is sometimes re-

laxed to only require the product to be nondegenerate (AKA anisotropic),

i.e. 〈v, w〉 = 0 for all w only if v = 0. We will instead refer to this type of

form, a nondegenerate symmetric bilinear form, as a pseudo inner prod-

uct (AKA pseudo-metric); it is characterized by the fact that 〈v, v〉 can
be negative or vanish. A vector v is called isotropic (AKA light-like) if

〈v, v〉 = 0.

A pseudo inner product does not yield a well-defined norm, but the

(not necessarily real) quantity
√〈v, v〉 is nevertheless sometimes called the

“length” of v. A pseudo inner product also defines orthonormal bases,

with the definition modified to allow 〈êμ, êν〉 = ±δμν . The number of

positive and negative “lengths” of basis vectors turns out to be indepen-

dent of the choice of basis, and this pair of integers (r, s) is called the

signature. We define ημν ≡ 〈êμ, êν〉 ≡ ημν , so that it is ±1 if μ = ν

(with r positive values), 0 otherwise. A general signature is called pseudo-

Riemannian (AKA pseudo-Euclidean), a signature with s = 0 is called

Riemannian (AKA Euclidean), a signature with s = 1 (or sometimes

r = 1) is called Lorentzian (AKA Minkowskian), and the signature (3,1) is

called Minkowskian (more specifically this is called the “mostly pluses”

signature (AKA relativity, spacelike, or east coast signature) while the sig-

nature (1,3), the “mostly minuses” signature (AKA particle physics,

timelike, or west coast signature), is also called Minkowskian).

� The term “signature” also sometimes refers to the integer r − s.

Below we summarize the relationships between various forms.
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Figure 2.2.2 Various types of forms on R
n.

☼ The above is an Euler diagram, where the spatial relationships of

the boxes indicate their relationships as sets (i.e. intersection, subset,

disjoint). We will use these frequently in summarizing the relationships

between mathematical concepts.

2.2.4 Orthogonality of vectors

Geometrically, one can alternatively take the approach that “orthogonality”

is the fundamental structure to be added to a real vector space V = Rn.

Orthogonality is defined by requiring that:

(1) Any subspace W defines an orthogonal complement W⊥ such that

only the zero vector is contained in both spaces (an orthogonal

decomposition)

(2) If v is orthogonal to w, then w is orthogonal to v

One can then look for bilinear forms that vanish for orthogonal vector argu-

ments. A degenerate form features at least one vector v that is orthogonal

to every other vector in V , thus violating (1) by being in both V and V ⊥.
By linearity, (2) can only be satisfied if the form is either symmetric or
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anti-symmetric. Thus our only two candidates are a pseudo inner product

or a nondegenerate 2-form. The latter is also called a symplectic form,

and can only exist in even-dimensional vector spaces.

2.2.5 Algebras: multiplication of vectors

The abelian group of vectors in a vector space can also be given a new

structure by defining multiplication between vectors to get another vector.

The Cartesian inspiration here might be considered to be the vector cross

product (AKA vector product or outer product) in 3 dimensions.

• Algebra: defines a bilinear product distributive over vector addition (no

commutativity, associativity, or identity required)

• Associative algebra: associative product; turns the abelian group of

vectors into a ring; can always be naturally extended to include a multi-

plicative identity

• Lie algebra: product denoted [u, v]; satisfies two other attributes of

the cross product, anti-commutativity [u, v] = − [v, u] and the Jacobi

identity [[u, v] , w] + [[w, u] , v] + [[v, w] , u] = 0

For example, the Cartesian vectors under the cross product are a non-

associative Lie algebra, while the real n × n matrices under matrix multi-

plication are an associative algebra.

� Note that “algebra” is sometimes defined to include associativity

and/or an identity.

� If the scalars of a Lie algebra are a field of characteristic 2, then we

no longer have [u, v] = − [v, u] ⇒ [v, v] = 0, and the latter is imposed

as a separate requirement in the definition.

In a Lie algebra (pronounced “lee”), the product is called the Lie

bracket, and the notation [u, v] in place of uv reflects the close relation-

ship between Lie algebras and associative algebras: every associative al-

gebra can be turned into a Lie algebra by defining the Lie bracket to be

[u, v] ≡ uv − vu. In these cases the Lie bracket is called the Lie commu-

tator. The Poincaré-Birkhoff-Witt theorem provides a converse to

this: that every Lie algebra is isomorphic to a subalgebra of an associative
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algebra called the universal enveloping algebra under the Lie commu-

tator. An abelian algebra has uv = vu; thus an abelian Lie algebra

(AKA commutative Lie algebra) has [u, v] = [v, u] ⇒ [u, v] = 0. Note

that an associative Lie algebra is not necessarily abelian, but does satisfy

[[u, v] , w] = 0 via the Jacobi identity.

Any algebra over a field is completely determined by specifying scalars

called structure coefficients (AKA structure constants), defined in a

given basis as follows:

eμeν = cρμνeρ

However, different structure coefficients may define isomorphic algebras.

2.2.6 Division algebras

A division algebra is an algebra with a multiplicative identity where

unique right and left inverses exist for every non-zero element. For an

associative division algebra, these inverses are equal, turning the non-zero

vectors into a group under multiplication. Ignoring scalar multiplication, an

associative algebra is a ring, and a commutative associative division algebra

is a field; thus an associative division algebra with scalar multiplication

ignored is sometimes called a division ring or skew field. A module over

a non-commutative skew field (such as H) can be seen to have much of the

same features as a vector space, including a basis.

In a division algebra, the existence of the left inverse u−1
L of u allows

us to “divide” elements in the sense that for any non-zero u and v, xu = v

has the solution x = vu−1
L , which we can regard as the “left” version of

v/u; similarly, ux = v has the solution x = u−1
R v. This is equivalent to

requiring that there be no zero divisors, i.e. uv = 0 ⇒ u = 0 or v = 0.

A normed division algebra has a vector space norm that additionally

satisfies ‖uv‖ = ‖u‖ ‖v‖.
Finite-dimensional real division algebras are highly constrained: all have

dimension 1, 2, 4, or 8; the commutative ones all have dimension 1 or 2;

the only associative ones are R, C, and H; and the only normed ones are

R, C, H, and O. Here we review these division algebras:

• C, the complex numbers, has basis {1, i} where i2 ≡ −1
• H, the quaternions, has basis {1, i, j, k} where i2 = j2 = k2 = ijk ≡ −1
• O, the octonions, has basis {1, i, j, k, l, li, lj, lk}, all anti-commuting

square roots of −1; we will not describe the full multiplication table

here
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We can define the quaternionic conjugate by reversing the sign of the

i, j, and k components, with the octonionic conjugate defined similarly.

The norm is then defined by ‖v‖ = √vv∗ in these algebras, as it is in C.

We lose a property of the real numbers each time we increase dimension

in the above algebras: C is not ordered; H is not commutative; and O is

not associative. C is a field (ignoring real scalar multiplication) and so can

be used as the scalars in a vector space Cn. One could imagine then trying

to find a multiplication on Cn to obtain complex division algebras, but the

only finite-dimensional complex division algebra is C itself. The quaternions

form a non-commutative ring, and so can be used as the scalars in a left

module Hn, but there is no obvious definition of On since the octonions are

not associative. However, we can form all of the algebrasR (n), C (n), H (n),

and O (n), where K (n) denotes the algebra of n× n matrices with entries

in K. H (n) can even be viewed as the group of linear transformations on

H
n, if Hn is defined as a right module while matrix multiplication takes

place from the left as usual.

2.3 Combining algebraic objects

We can define combinations of algebraic objects to construct new, “big-

ger” objects in the same category. We will use the concepts of categorical

products and coproducts (AKA sums) in category theory to organize our

presentation. While we will not go into exact definitions here, a categorical

product can be thought of as the “most general” object with morphisms

to its constituents, while a categorical coproduct can be thought of as the

“most general” object with morphisms in the opposite direction, from the

constituent objects to their coproduct. In certain categories, the product

and coproduct of two objects coincide, in which case they are both called

the biproduct (AKA direct sum). Even in these categories, however, the

product and coproduct are distinct in the case of an infinite number of fac-

tors. Note that the common meaning of “direct sum” is not equivalent to

the categorical direct sum (biproduct) in category theory, as we see below.



October 20, 2017 17:37 Mathematics for Physics 9in x 6in b3077 page 18

18 Abstract algebra

Table 2.3.1 The categorical product and coproduct in different categories.

Product Coproduct

Sets Cartesian product A× B Disjoint union A ∪d B

Groups Direct product G×H Free product G ∗H
Abelian groups Direct product G×H Direct sum G⊕H

Vector spaces Direct product V ×W Direct sum V ⊕W

Commutative rings with unity Direct product R × S Tensor product R⊗ S

Notes: Coproducts in algebras and other categories can become quite com-
plicated.

2.3.1 The direct product and direct sum

The direct product takes the Cartesian product A×B of sets, i.e. the

ordered pairs of elements (a, b), and applies all operations component-wise;

e.g. for a group we define (a, b) + (c, d) ≡ (a + c, b + d). Note that this

approach cannot be taken in all categories; for example, a new field cannot

be obtained from the direct product of two fields, since (0, a) is distinct

from 0 and has no multiplicative inverse. The direct sum is identical

to the direct product except in the case of an infinite number of factors,

when the direct sum
⊕
Aμ consists of elements that have only finitely many

non-identity terms, while the direct product
∏
Aμ has no such restriction.

� For a finite number of objects, the direct product and direct sum are

identical constructions, and these terms are often used interchangeably,

along with their symbols × and ⊕. In particular, since the group

operation is usually written like multiplication, we usually write G×H ;

with vector spaces and algebras, where the abelian group operation is

written like addition, we instead write V ⊕W .

� The categorical coproduct for abelian groups and vector spaces is

the direct sum, which is then also applied to objects in other cate-

gories, potentially causing confusion with the “categorical direct sum”

(biproduct) in those other categories, which may be a distinct con-

struction or not exist.
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An additional distinction that can be made is between an external sum

or product, where the construction of a new object is from given constituent

objects, and an internal sum or product, which is formed from a given

object by recognizing constituent sub-objects within it and noting that the

sum or product of the sub-objects is isomorphic to the original object.

� In addition to denoting a direct sum, the symbol ⊕ is sometimes

used to denote either the internal direct product of groups or the free

product. In general, the above symbols are not always used consistently

and it is important to understand exactly what operation is meant in

a given situation.

As we will see, in addition to this “internal/external” distinction, there

is a rough logic as well to the distinction between the designations “in-

ner/outer” and “interior/exterior” with regard to products.

2.3.2 The free product

The coproduct in the category of groups is the free product G∗H , defined

as the set of finite ordered “words” g1h2g3h4 · · · gn−1hn of non-identity

elements, with the group operation applied as juxtaposition of words. After

juxtaposition, any adjacent letters from the same group are combined, and

removed if the result is the identity. Consistent with this, the free product

of a family of groups Gμ, denoted ∗Gμ, is defined as finite words with

the letters being non-identity elements from any Gμ, where no adjacent

elements come from the same Gμ.

� It is important to note the difference between the free product ∗Gμ,

where each letter gi is an element of any Gμ distinct from the previous

one, and the direct sum
⊕
Gμ, which can be viewed as a word where

each letter gμ is an element of a distinct Gμ (i.e. gμ is the only element

of Gμ in the word).

The free product is an example of the more general free object in

category theory, which can be thought of as “forcing” one category into

being another in the “most general” way; again we will not go into exact

definitions, but instead describe some common free constructions.



October 20, 2017 17:37 Mathematics for Physics 9in x 6in b3077 page 20

20 Abstract algebra

• The free group on a set S “forces” S into being a group, defining inverses

by a copy S′ and forming a group out of the finite ordered words of

elements of S∪S′ with juxtaposition as the group operation (as with the

free product, any combinations ss−1 or s−1s are removed)

• The free associative algebra on a vector space V (AKA the associative

algebraW freely generated by V ) “forces” the words v1v2 · · · vn into being

an associative algebra by defining vector multiplication as juxtaposition

and requiring it to be multilinear, i.e. (v1 + v2) (av3) ≡ av1v3 + av2v3;

as we will see below, this is in fact just the tensor algebra over V , so an

element v1v2 can be written v1 ⊗ v2
• The free module of rank n over a ring R has no multiplication, so the

words of a specified length r1r2 · · · rn are “forced” into being a module

by defining addition and multiplication component-wise, i.e.

t (r1r2 · · · rn + s1s2 · · · sn) = (tr1 + ts1) (tr2 + ts2) · · · (trn + tsn) ;

thus an element r1r2 is just a direct sum, and can be written r1 ⊕ r2
The free abelian group is the free module of rank n over Z, since as

we noted previously, any abelian group can be viewed as a module over Z

under “integer multiplication.” In fact, the free abelian group of rank n is

just Z⊕ Z⊕ · · · ⊕ Z (n times) under component-wise addition.

� Note that the name “free abelian group” is a potential source of

confusion, since it is a free module, not a free group (except for the

case of rank one, i.e. Z).

2.3.3 The tensor product

The tensor product appears as a coproduct for commutative rings with

unity, but as with the direct sum this definition is then extended to other

categories. For abelian groups, the tensor product G ⊗ H is the group

generated by the ordered pairs g ⊗ h linear over +; as more structure is

added, the tensor product is required to be bilinear with regard to these

structures. It can then be applied to multiple objects by extending these

bilinear rules to multilinear ones.

It is helpful to compare the properties of the tensor product to the direct

sum in various categories, since consistent with their symbols ⊕ and ⊗ they

act in many ways like addition and multiplication.
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Table 2.3.2 The direct sum and tensor product in different categories.

Direct sum ⊕ Tensor product ⊗

Abelian groups (v1 ⊕ w) + (v2 ⊕ w)

≡ (v1 + v2)⊕ (w+w)

(v1 ⊗w) + (v2 ⊗ w)

≡ (v1 + v2)⊗w

Vector spaces a(v ⊕w)

≡ av ⊕ aw

a(v ⊗w)

≡ av ⊗w ≡ v ⊗ aw

Inner product spaces 〈v1 ⊕ w1, v2 ⊕ w2〉
≡ 〈v1, v2〉+ 〈w1, w2〉

〈v1 ⊗w1, v2 ⊗ w2〉
≡ 〈v1, v2〉 〈w1, w2〉

Algebras / Rings (v1 ⊕ w1)(v2 ⊕w2)

≡ (v1v2)⊕ (w1w2)

(v1 ⊗w1)(v2 ⊗w2)

≡ (v1v2)⊗ (w1w2)

Notes: The addition and multiplication of inner products is that of scalars,
while the multiplication of vectors is that of the algebra or ring.

It is important to remember that elements of the direct sum V ⊕W

always have the form v ⊕ w, while elements of the tensor product V ⊗W
are generated by the elements v⊗w using the operation + as defined above,

so that the general element of V ⊗W has the form of a sum
∑

(vμ ⊗ wν).

For example, if V and W are m- and n-dimensional vector spaces with

bases dμ and eν , V ⊗ W has basis {dμ ⊗ eν} and dimension mn, while

V ⊕W has basis {d1, . . . , dm, e1, . . . , en} and dimension m+n. If V andW

are algebras defined by square matrices, the direct sum V ⊕W and tensor

product V ⊗W have elements that are isomorphic to matrices that can be

formed from the matrices v and w:

v ⊕ w ∼=
(
v 0

0 w

)
v ⊗ w ∼=

⎛⎜⎝v11w v12w · · ·
v21w v22w · · ·
...

...
. . .

⎞⎟⎠
The convention used in the second isomorphism, in which v⊗w is “the

matrix v with elements multiples of w,” is sometimes called the Kronecker

product; one can also choose to use the opposite convention. Some other

specific isomorphisms include:

• C⊗ C ∼= C⊕ C

• C⊗H ∼= C (2)

• H⊗H ∼= R (4)

where e.g. C (2) denotes the algebra of complex 2× 2 matrices.
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2.4 Dividing algebraic objects

Above, we combined objects using sums and products to form larger ob-

jects. Here, this generalization of arithmetic is extended to quotients, start-

ing with groups.

2.4.1 Quotient groups

The first step in this direction is to define cosets. For any subgroup H ⊂ G

and element g ∈ G, the set gH ≡ {gh | h ∈ H} is called a left coset of H

in G. Right cosets are defined similarly, and g is called a representative

element of the coset gH . Cosets can be viewed as a partitioning of all of

G into equal-sized disjoint “copies.” However, this cannot be used to define

a group quotient G/H since in general, the cosets themselves do not form

a group.

A normal subgroup (AKA invariant subgroup, self-conjugate sub-

group) of G, denoted N � G, is defined as follows:

N � G if gN = Ng ∀g ∈ G⇔ gNg−1 ⊆ N ∀g ∈ G
Note that an immediate consequence of the above definition is that any

subgroup of an abelian group is normal. It is not hard to see that the cosets

of N in G (left and right being identical) do in fact comprise the elements

of a group under the group operation (gN)(hN) ≡ {gnhm | n,m ∈ N} =

(gh)N . We denote this group G/N and call it a quotient group (AKA

factor group).

The kernel Kerφ of a homomorphism φ from G to another group Q is

the subgroup of elements that are mapped to the identity 1. Any normal

subgroup N is then the kernel of the group homomorphism φ : G → G/N

defined by g �→ gN , and thus all normal subgroups are homomorphism

kernels. The converse of this is also true: for any homomorphism φ : G→ Q,

Kerφ is normal in G. Furthermore, the quotient group is isomorphic to

the subgroup φ (G) of Q, so that we have the equation G/Kerφ ∼= φ (G),

called the first isomorphism theorem or the fundamental theorem

on homomorphisms: φ shrinks each equal-sized coset of G to an element

of φ (G), which is therefore a kind of simpler approximation to G.
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g2 Kerφ
g1 Kerφ

Kerφ

g4 Kerφ
g3 Kerφ

G G/Kerφ ≅ φ(G) ⊆  Q

Q

1
φ(g1)
φ(g2)
φ(g3)
φ(g4)

Figure 2.4.1 The kernel of a homomorphism φ : G → Q factors the group into
elements of the image.

It is helpful to demonstrate quotient groups with an easy example. Let

φ : Z → Z3 be the (surjective) homomorphism that sends each element to

its remainder after being divided by 3. The kernel of this homomorphism

is the subgroup of Z consisting of all integers of the form 3n. Then the

cosets Z/ {3n} are the subgroups {3n}, {3n+ 1}, and {3n+ 2}, which are

isomorphic to the elements of Z3.

2.4.2 Semidirect products

In general, φ (G) ∼= G/Kerφ is not a subgroup of G, so we cannot use

this equation to decompose G into an internal product by “multiplying

both sides by Kerφ.” If H is a subgroup of G and there is a homomor-

phism φ : G → H that is the identity on H , we can once again extend the

arithmetic of groups to state that G = Kerφ �H , where � represents the

semidirect product (sometimes stated “G splits over Kerφ”).

g2 Kerφ

g1 Kerφ

Kerφ

g3 Kerφ

G

1

φ(g1)

φ(g2)

φ(g3)

H = φ(G) ≅ G/Kerφ

Figure 2.4.2 A homomorphism from G to a subgroup H that is the identity on
H induces a semidirect product structure on G.

Note that the semidirect product as defined here is an internal product

formed from G, and is distinct from the direct product since in general
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(n1h1)(n2h2) �= (n1n2)(h1h2); in fact non-isomorphic groups can be the

semidirect products of the same two constituent groups. If H is normal as

well as N , then this is not the case and the semidirect product is the same

as the internal direct product.

An equivalent definition of the semidirect product starts with a normal

subgroup N of G, defining G = N � H if G = NH and N ∩ H = 1, or

equivalently if every element of G can be written in exactly one way as a

product of an element of N and an element of H . These properties can be

seen in a common use of the semidirect product in physics, where N is the

group of translations in R
n, H is the group of rotations and reflections, and

N �H is thus the group of all rigid transformations.

2.4.3 Quotient rings

We can also define the quotient ring (AKA factor ring) of a ring R, and

related concepts:

• Ideal: subring A ⊂ R where ra, ar ∈ A ∀a ∈ A, r ∈ R
• Quotient ring: The cosets R/A ≡ {r +A | r ∈ R}, which form a ring

iff A is an ideal

• Prime ideal: Subring A ⊂ R | ab ∈ A for a, b ∈ R⇒ a ∈ A or b ∈ A
• Maximal ideal: ∀ ideal B ⊇ A, B = A or B = R

The definition of ideal above is sometimes called a two-sided ideal, in

which case a left ideal only requires that ra ∈ A and a right ideal

requires that ar ∈ A. For a commutative ring, these are all equivalent.

These concepts are also applied to associative algebras, since with scalars

ignored they are rings.

Note that since a ring is an abelian group under addition, every sub-

group is already normal. As with groups, the kernel of a ring homomor-

phism φ is an ideal, and factors R into elements isomorphic to those of the

image of R: R/Kerφ ∼= φ(R). Some additional related facts are:

• For R commutative with unity, R/A is an integral domain iff A is prime

• For R commutative with unity, R/A is a field if A is maximal

Continuing to add structure, in a vector space V we can take the quo-

tient V/W for any subspace W , which is just isomorphic to the orthogonal

complement of W in V .
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2.4.4 Related constructions and facts

Another important class of groups is the simple groups, whose only nor-

mal subgroups are G and 1. The finite simple groups behave in many

ways like primes, and after a long effort have been fully classified. Some

additional constructions and facts concerning quotients include:

• The index of a group G over a subgroup H , denoted |G : H |, is the

number of cosets of H in G

• |G : H | = |G|/|H | for finite groups

• G/Z(G) ∼= Inn(G), the group of all inner automorphisms of G

• G/Z(G) is cyclic, G is abelian

• The abelian simple groups are Zp for p prime

• Feit-Thompson theorem: non-abelian simple groups have even order

2.5 Summary

In summary, it is helpful to see how algebraic structures follow by discarding

properties of the real numbers, and then how more complicated structures

are constructed by generalizing vectors and scalars.
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Figure 2.5.1 Summary of algebraic categories and their relationships.
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Chapter 3

Vector algebras

3.1 Constructing algebras from a vector space

When applied to two copies of the same vector space V , the tensor product

is sometimes called the “outer product,” since it is a linear map from two

vectors to a “bigger” object “outside” V , as opposed to the inner product,

which is a linear map from two vectors to a “smaller” object “inside” V .

The term “outer product” also sometimes refers to the exterior prod-

uct V ∧ V (AKA wedge product, Grassmann product), which is defined to

be the tensor product V ⊗V modulo the relation v∧v ≡ 0. By considering

the quantity (v1 + v2) ∧ (v1 + v2), this immediately leads to the equivalent

requirement of identifying anti-symmetric elements, v1 ∧ v2 ≡ −v2 ∧ v1.
These outer products can be applied to a vector space V to generate a

larger vector space, which is then an algebra under the outer product. If

V has a pseudo inner product defined on it, we can then generalize it to

the larger algebra. In the following, we will limit our discussion to finite-

dimensional real vector spaces V = R
n; generalization to complex scalars

is straightforward.

3.1.1 The tensor algebra

We first use the tensor product to generate an algebra from an n-

dimensional vector space V . The kth tensor power of V , denoted T kV ,

is the tensor product of V with itself k times; it forms a vector space of

dimension nk. The tensor algebra of V is then defined to be the infinite

direct sum of every tensor power:

TV ≡
∑

T kV = R⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · ·
(however, see the last paragraph of Section 3.2.2 on page 40).

27
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The vector multiplication operation is ⊗, and thus the infinite-

dimensional tensor algebra is associative. In fact, the tensor algebra can

alternatively be defined as the free associative algebra on V , with juxtapo-

sition indicated by the tensor product.

If a pseudo inner product, i.e. a nondegenerate symmetric bilinear form,

is defined on V , it can be naturally extended to any T kV by extending

the pairwise operation defined previously: if A = v1 ⊗ v2 ⊗ · · · ⊗ vk, and

B = w1 ⊗ w2 ⊗ · · · ⊗ wk, we define

〈A,B〉 ≡
∏
〈vi, wi〉 .

The pseudo inner product can then be extended to a nondegenerate sym-

metric multilinear form on all of TV by defining it to be zero between

elements from different tensor powers.

3.1.2 The exterior algebra

Similarly, the kth exterior power of an n-dimensional vector space V is

defined to be

ΛkV ≡ V ∧ V ∧ · · · ∧ V (k times).

The exterior product is generalized to ΛkV by requiring the product to

vanish if any two vector components are identical. This is equivalent to

requiring the product to be completely anti-symmetric, i.e. to change sign

under the exchange of any two vector components. Note that ΛkV thus

automatically vanishes for k > n, since the (k+1)th component will have to

be a linear combination of previous components, resulting in terms v∧v = 0.

The exterior algebra (AKA Grassmann algebra, alternating algebra)

is the tensor algebra modulo the relation v ∧ v ≡ 0, and can be written as

ΛV ≡ ΣΛkV = R⊕Λ1V ⊕ Λ2V ⊕ · · · ⊕ ΛnV,

where n is the dimension of V (since ΛkV automatically vanishes for k > n).

The vector multiplication of the algebra is the exterior product ∧, which
applied to A ∈ ΛjV and B ∈ ΛkV gives A ∧B ∈ Λj+kV with the property

A ∧B ≡ (−1)jkB ∧A.
If a pseudo inner product is defined on V , it can be naturally extended

to any ΛkV by using the determinant: if A = v1 ∧ v2 ∧ · · · ∧ vk, and

B = w1 ∧ w2 ∧ · · · ∧ wk, we define

〈A,B〉 ≡ det (〈vi, wj〉) .
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Note that this definition is also alternating, as it must for the inner product

to be bilinear; i.e. exchanging two vectors in A reverses the sign of both A

and 〈A,B〉. Also note that if A = ae1 ∧ · · · ∧ ek, then 〈A,A〉 = ±a2. The

pseudo inner product can then be extended to a nondegenerate symmetric

multilinear alternating form on all of ΛV by defining it to be zero between

elements from different exterior powers. If êμ is an orthonormal basis for

V , then

{êμ1 ∧ · · · ∧ êμk
}1≤μ1<···<μk≤n

is an orthonormal basis for ΛkV , and the union of such bases for k ≤ n is

an orthonormal basis for ΛV .

In describing a particular element of ΛV we can unambiguously write

+ instead of ⊕ and allow any zero terms to be omitted. A simple example

can be helpful to keep in mind the concrete consequences of the exterior

algebra’s abstract properties.
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Figure 3.1.1 The exterior algebra over a real 2-dimensional vector space. Ex-
terior products not shown above vanish; the product indicated with bold arrows
is elaborated by the first equation. The second equation calculates the inner
product of two elements of Λ2V using the determinant.
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3.1.3 Combinatorial notations

An alternating quantity can be represented in several different ways. For ex-

ample, the exterior product applied to multiple vectors is defined to change

sign under the exchange of any two vector components. This can be written

v1 ∧ v2 ∧ · · · ∧ vk = sign(π)vπ(1) ∧ vπ(2) ∧ · · · ∧ vπ(k),
where π is any permutation of the k indices, and sign(π) is the sign of the

permutation. Another way of writing it is

v1 ∧ v2 ∧ · · · ∧ vk =
1

k!

∑
i1,i2,...,ik

εi1i2...ikvi1 ∧ vi2 ∧ · · · ∧ vik ,

where each index ranges from 1 to k and ε is the permutation symbol

(AKA completely anti-symmetric symbol, Levi-Civita symbol, alternating

symbol, ε-symbol), defined to be +1 for positive index permutations, −1
for negative, and 0 otherwise. In order to remove the summation sign by

using the Einstein summation convention, the permutation symbol with

upper indices is defined identically.

For objects with many indices, multi-index notation is sometimes

used, in which a multi-index I can be defined as I ≡ i1, i2, . . . , ik, but also

can represent a sum or product. For example, the previous expression can

be written

v1 ∧ v2 ∧ · · · ∧ vk =
1

k!

∑
I

εIvi1 ∧ vi2 ∧ · · · ∧ vik

=
1

k!
εIvI .

� Note that multi-index notation is potentially ambiguous and much

must be inferred from context, since the number of indices k is not

explicitly noted, and the sequence of indices may be applied to either

one object or any sum or product.

Another example of an alternating quantity is the determinant of an

n× n matrix M i
j , which can be written
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det(M) =
∑
π

sign (π)M1
π(1)M

2
π(2) · · ·Mn

π(n)

=
∑

i1,i2,...,in

εi1i2...inM1
i1M

2
i2 · · ·Mn

in ,

where the first sum is over all permutations π of the n second indices of the

matrix M i
j . Using the previous relation for the exterior product in terms

of the permutation symbol, we can see that the transformation of the top

exterior product of basis vectors under a change of basis e′μ =Mν
μeν is

e′1 ∧ e′2 ∧ · · · ∧ e′n = det(M) e1 ∧ e2 ∧ · · · ∧ en,
which reminds of us of the Jacobian determinant from integral calculus,

and as we will see makes the exterior product a natural way to express the

volume element.

☼ The above relationship between the exterior product and the de-

terminant means that under a positive definite inner product, for k

arbitrary vectors vμ = Mν
μeν the quantity P ≡ v1 ∧ v2 ∧ · · · ∧ vk

satisfies
√〈P, P 〉 = det(M), which is the volume of the parallelepiped

defined by the vectors. There are other ways in which P behaves like

a parallelepiped, and it is often useful to picture it as such.

If V is n-dimensional and has a basis eμ, a general element A of ΛkV

can be written in terms of a basis for ΛkV as

A =
∑

μ1<···<μk

Aμ1...μkeμ1 ∧ · · · ∧ eμk
.

Here the sum is over only ordered sequences of indices, since due to anti-

symmetric elements being identified, only these are linearly independent.

Each index can take on any value between 1 and n. We can also write

A =
1

k!

∑
μ1,...,μk

Aμ1...μkeμ1 ∧ · · · ∧ eμk
,

where the coefficient is now defined for all combinations of indices, and its

value changes sign for any exchange of indices (and thus vanishes if any

two indices have the same value). The factorial ensures that the values for

ordered sequences of indices matches the above expression.
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The first expression shows that ΛkV is a vector space with dimension

equal to the number of distinct subsets of k indices from the set of n avail-

able, i.e. its dimension is equal to the binomial coefficient “n choose k”

(
n

k

)
≡ n!

k! (n− k)! .

A general element of ΛV then has the form

⊕
0≤k≤n

[ ∑
μ1<···<μk

Aμ1...μkeμ1 ∧ · · · ∧ eμk

]
,

from which we can calculate that ΛV has dimension 2n.

3.1.4 The Hodge star

A pseudo inner product determines orthonormal bases for V , among which

we can choose a specific one êμ. The ordering of the êμ determines a choice

of orientation. This orientation uniquely determines an orthonormal basis

(i.e. a unit “length” vector) for the one-dimensional vector space ΛnV ,

namely the unit n-vector (AKA orientation n-vector, volume element)

Ω ≡ ê1 ∧ · · · ∧ ên.

� Many symbols are used in the literature for the unit n-vector and

related quantities, including ε, i, I, and ω; to avoid confusion with the

other common uses of these symbols, in this book we use the (non-

standard) symbol Ω.

Since ΛnV is one-dimensional, every element of ΛnV is a real multiple

of Ω. Thus Ω sets up a bijection (dependent upon the inner product and

choice of orientation) between ΛnV and Λ0V = R. In general, ΛkV and

Λn−kV are vector spaces of equal dimension, and thus we can also set up

a bijection between them.

The Hodge star operator (AKA Hodge dual) is defined to be the

linear map ∗ : ΛkV → Λn−kV that acts on A ∈ ΛkV such that for any

B ∈ Λn−kV , we have

A ∧B = 〈∗A,B〉Ω.
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An equivalent requirement is that 〈C ∧ ∗A,Ω〉 = 〈C,A〉 for any C ∈ ΛkV .

In particular, we immediately obtain

A ∧ ∗A = 〈∗A, ∗A〉Ω = (−1)s 〈A,A〉Ω.

☼ These relations allow one to think of the Hodge star ∗ as an operator

that roughly “swaps the exterior and inner products,” or alternatively

that yields the “orthogonal complement with the same magnitude.”

The Hodge star operator is dependent upon a choice of inner product

and orientation, but beyond that is independent of any particular basis.

In particular, for any orthonormal basis êμ oriented with Ω, we can take

A ≡ ê1 ∧ · · · ∧ êk and B ≡ êk+1 ∧ · · · ∧ ên, in which case ∗A = 〈B,B〉B, i.e.

∗A is constructed from an orthonormal basis for the orthogonal complement

of A; in fact, this relation can be used as an equivalent definition of the

Hodge star.

Below we list some easily derived facts about the Hodge star operator,

where V is n-dimensional with unit n-vector Ω and a pseudo inner product

of signature (r, s):

• ∗Ω = 1⇒ (∗A)Ω = A if A ∈ ΛnV

• ∗1 = (−1)s Ω⇒ 〈Ω,Ω〉 = (−1)s
• ∗ ∗A = (−1)k(n−k)+s

A = (−1)k(n−1)+s
A, where A ∈ ΛkV

• A ∧ ∗B = B ∧ ∗A = (−1)s 〈A,B〉Ω if A,B ∈ ΛkV

• 〈A,B〉 = (−1)s ∗ (A ∧ ∗B) if A,B ∈ ΛkV

� Some authors instead define the Hodge star by the relation A∧∗B =

〈A,B〉Ω, which differs by a sign in some cases from the more common

definition we use; in particular, with this definition ∗Ω = (−1)s and

∗1 = Ω.

Note that ∗A is not a basis-independent object, since it reverses sign

upon changing the chosen orientation. Such an object is prefixed by the

word pseudo-, e.g. ∗v is called a pseudo-vector (AKA axial vector, in

which case v is called a polar vector) and Ω itself is a pseudo-scalar.
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� The use of “pseudo” to indicate a quantity that reverses sign upon a

change of orientation should not be confused with the use of “pseudo”

to indicate an inner product that is not positive-definite. There are

also other uses of “pseudo” in use. In particular, in general relativ-

ity the term “pseudo-tensor” is sometimes used, where neither of the

above meanings are implied; instead this signifies that the tensor (to

be defined in 3.2.2) is not in fact a tensor.

3.1.5 Graded algebras

The exterior algebra is an example of a graded algebra, which means

that it has a decomposition, or gradation (AKA grading), into a direct

sum of vector subspaces
⊕
Vg where each Vg corresponds to a weight

(AKA degree), an element g of a monoid G (e.g. N under +) such that

VgVh = Vg+h. The tensor algebra is a N-graded algebra, since T jV ⊗T kV =

T j+kV , as is the exterior algebra of Rn (although Vj vanishes for j > n).

The property A∧B = (−1)jk B∧A is then called graded commutativity

(AKA graded anti-commutativity), whose definition can be generalized to

other monoids.

A graded Lie algebra also obeys graded versions of the Jacobi identity

and anti-commutativity. If we indicate the weight of v by |v|, the graded Lie

bracket becomes [u, v] = (−1)|u||v|+1 [v, u], and the graded Jacobi identity

is (−1)|u||w|
[[u, v]w] + (−1)|v||u| [[v, w] u] + (−1)|w||v|

[[w, u] , v] = 0. A Lie

superalgebra (AKA super Lie algebra) is a Z2-graded Lie algebra V0⊕V1
that is used to describe supersymmetry in physics.

3.1.6 Clifford algebras

Given an n-dimensional real vector space V with a pseudo inner product,

we can generate another associative algebra called the Clifford algebra

(AKA geometric algebra). As we will see, this algebra subsumes both the

exterior algebra and the Hodge star.

The Clifford algebra generated by V is defined to be the tensor alge-

bra modulo the identification vv ≡ 〈v, v〉, where juxtaposition denotes the

vector multiplication operation on the algebra, called Clifford multipli-

cation (AKA geometric multiplication). As a vector space, the Clifford

algebra is isomorphic to the exterior algebra; in fact, the exterior product

can be defined in terms of the Clifford product, leading immediately to
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simple relationships between these and the inner product:

• 〈v, w〉 = (vw + wv) /2

• v ∧ w ≡ (vw − wv) /2
• vw = 〈v, w〉 + v ∧ w
Each vector v can be written in terms of an orthonormal basis êμ of V , and

for any pair of orthogonal vectors we have ê1ê2 = ê1 ∧ ê2 = −ê2ê1. The

exterior product then naturally extends to any number of vectors by taking

their completely anti-symmetrized sum under Clifford multiplication:

v1 ∧ v2 ∧ · · · ∧ vk ≡ 1

k!

∑
π

sign (π) vπ(1)vπ(2) · · · vπ(k)

This completes the definition of the exterior product in terms of Clifford

multiplication, carrying over all its properties from the exterior algebra. In

particular, the Clifford algebra can be given the same basis as the orthonor-

mal basis in the exterior algebra

n⋃
k=0

{êμ1 ∧ · · · ∧ êμk
}1≤μ1<···<μk≤n

where we take {1} for k = 0.

Given a choice of orientation with corresponding unit n-vector Ω, the

Hodge star of an element A ∈ ΛkV may be written in terms of the Clifford

product as

∗A = (−1)k(k−1)
2 +s

AΩ

where the pseudo inner product has signature (r, s). It is helpful to see

how the Hodge star works out in terms of the Clifford product in common

signatures.

Table 3.1.1 The Hodge dual in terms of Clifford products in common signatures.

(2, 0) (3, 0) (3, 1) (1, 3)

∗v −Ωv = vΩ Ωv = vΩ Ωv = −vΩ Ωv = −vΩ
∗B −ΩB = −BΩ −ΩB = −BΩ ΩB = BΩ ΩB = BΩ

∗T −ΩT = −TΩ −ΩT = TΩ −ΩT = TΩ

Notes: here we have v ∈ V, B ∈ Λ2V , and T ∈ Λ3V .



October 20, 2017 17:37 Mathematics for Physics 9in x 6in b3077 page 36

36 Vector algebras

In particular, the three dimensional cross product is seen to produce

the pseudo-vector v × w = ∗ (v ∧ w) = −Ω (v ∧ w) = − (v ∧ w)Ω.

☼ Considering ae1(be1+ce2) = ab+ac(e1∧e2), we can think of Clifford

multiplication as an operation that “scalar multiplies parallel compo-

nents and exterior multiplies orthogonal ones.” In particular, the prod-

uct AΩ will “turn all basis vectors in A into scalars,” yielding a form

of orthogonal complement, as is the Hodge star.

3.1.7 Geometric algebra

The term “geometric algebra” usually refers to a relatively recent resurgence

of interest in Clifford algebras, with an emphasis on geometric interpreta-

tions and motivations, and a variety of newly defined operations on the

algebra. Here we will provide a brief synopsis of some of these ideas, with

an eye towards potential usage in physical models.

� It should be noted that definitions, notation, and terminology in

geometric algebra vary quite significantly from author to author.

A general element of the Clifford algebra is called a multivector (AKA

Clifford number), while a general element of ΛkV is called a k-vector (AKA

homogeneous multivector) and is said to be of grade k (note that this is

its weight as an element of the algebra graded over the exterior product,

but not over the Clifford product).

An element that can be written as the exterior product of k vectors (or

equivalently, as the Clifford product of k orthogonal vectors) is called a k-

blade. So for example, e1∧(e2 + e3) is a 2-blade, while (e1 ∧ e2)+(e3 ∧ e4)
is a 2-vector and e1+(e2 ∧ e3) is a multivector. Note that if V has dimension

3 or less, every k-vector is a k-blade; in higher dimensions, they are in

general sums of k-blades. 2-vectors are sometimes referred to as bivectors,

and 3-vectors as trivectors.

The k-vector part of a general Clifford algebra element A is denoted

〈A〉k (the scalar part 〈A〉0 is often written 〈A〉), and is a sum of k-blades.

Thus any multivector can be decomposed into a sum of k-vectors: A =∑ 〈A〉k. The unit n-vector Ω associated with a choice of orientation on V

is sometimes called the pseudo-scalar.
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Various operations can be defined on the entire Clifford algebra by defin-

ing them for k-blades and then using linearity. Below, we consider an a-

blade A and a b-blade B.

• Dot product (AKA inner product): A•B ≡ 〈AB〉 |a−b| (the lowest grade
part of the Clifford product AB)

• Exterior product (AKA outer product): A∧B ≡ 〈AB〉(a+b) (the highest

grade part of AB)

• Reversion: the reverse Ã of A = v1 ∧ v2 ∧ · · · ∧ va reverses the order of

its components vi ⇒ Ã = (−1)a(a−1)/2
A, ÃB = B̃Ã

The definition of exterior product here can easily be shown to be equivalent

to the usual one given in the exterior algebra, and thus shares the same

symbol. In contrast, A •B is similar but not identical to the inner product

〈A,B〉 ≡ det (〈vi, wj〉) defined on the exterior algebra: A • B does not

vanish for two elements of different grade, and for two k-blades one obtains

the result A •B =
〈
Ã, B

〉
= (−1)k(k−1)/2 〈A,B〉. Ã is sometimes denoted

A†, since under any representation of the Clifford algebra generated by

hermitian matrices as vectors, the reverse corresponds to the hermitian

conjugate.

Various relations then follow from these definitions. Below, we consider

an a-blade A and a b-blade B, where V is n-dimensional and the pseudo

inner product has signature (r, s).

• v •A = (vA− (−1)aAv) /2
• v ∧ A = (vA+ (−1)aAv) /2⇒ vA = v •A+ v ∧A
• In particular, v0 • (v1 ∧ v2) = (v0 • v1) v2 − (v0 • v2) v1, and
• v0 • (v1 ∧ v2 ∧ v3) =
(v0 • v1) (v2 ∧ v3)− (v0 • v2) (v1 ∧ v3) + (v0 • v3) (v1 ∧ v2)

• Ω •A = ΩA = (−1)a(n−1)
AΩ = (−1)a(n−1)

A • Ω
• Ω2 ≡ ΩΩ = (−1)n(n−1)/2+s ⇒ Ω̃Ω = (−1)s ⇒ ∗A =

(
Ω̃Ω

)
ÃΩ

• In particular, Ω2 = −1 for the signatures (2, 0) , (3, 0) , (3, 1) and (1, 3)

• 〈AB〉0 = 〈BA〉0 ⇒ 〈AB · · ·C〉0 = 〈B · · ·CA〉0
• If B is a bivector, the commutator [A,B] = AB−BA has the same grade

as A⇒ the commutator of two bivectors is another bivector

• If B is a bivector, BA = B •A+ [B,A] /2 +B ∧A
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� It should be noted that some authors in geometric algebra define a

“dual” that differs by a (grade- and signature-dependent) sign from the

usual Hodge dual used in most texts. For example, AΩ is sometimes

defined as the “dual” of A, in which case the “swapping of the inner and

exterior products” property can be generalized to the form A• (BΩ) =

(A ∧B)Ω, valid for all a+ b ≤ n.

3.2 Tensor algebras on the dual space

Given a finite-dimensional vector space V , the dual space V ∗ is defined

to be the set of linear mappings from V to the scalars (AKA the linear

functionals on V ). The elements of V ∗ can be added together and multiplied

by scalars, so V ∗ is also a vector space, with the same dimension as V .

� Note that in general, the word “dual” is used for many concepts in

mathematics; in particular, the dual space has no relation to the Hodge

dual.

3.2.1 The structure of the dual space

An element ϕ : V → R of V ∗ is called a 1-form. Given a pseudo inner

product on V , we can construct an isomorphism between V and V ∗ defined

by v �→ 〈v, 〉, i.e. v ∈ V is mapped to the element of V ∗ which maps any

vector w ∈ V to 〈v, w〉. This isomorphism then induces a corresponding

pseudo inner product on V ∗ defined by 〈〈v, 〉 , 〈w, 〉〉 ≡ 〈v, w〉.
An equivalent way to set up this isomorphism is to choose a basis eμ of

V , and then form the dual basis βλ of V ∗, defined to satisfy βλ(eμ) = δλμ.

The isomorphism between V and V ∗ is then defined by the correspondence

v = vμeμ �→ (ηλμv
μ)βλ ≡ vλβ

λ, corresponding to the isomorphism in-

duced by the pseudo inner product on V that makes eμ orthonormal. Note

that if 〈eμ, eμ〉 = −1 then eμ �→ −βμ. This isomorphism and its inverse

(usually in the context of Riemannian manifolds) are called the musical
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isomorphisms, where if v = vμeμ and ϕ = ϕμβ
μ we write

v� ≡ 〈v, 〉
=

(
ημλv

λ
)
βμ

≡ vμβ
μ

ϕ� ≡ 〈ϕ, 〉
=

(
ημλϕλ

)
eμ

≡ ϕμeμ

and call the v� the flat of the vector v and ϕ� the sharp of the 1-form ϕ.

☼ A 1-form acting on a vector can thus be viewed as yielding a projec-

tion. Specifically, ϕ(v)/
∥∥ϕ�

∥∥ is the length of the projection of v onto

the ray defined by ϕ�.

It is important to note that there is no canonical isomorphism be-

tween V and V ∗, i.e. we cannot uniquely associate a 1-form with a given

vector without introducing extra structure, namely an inner product or a

preferred basis. Either structure will do: a choice of basis is equivalent

to the definition of the unique inner product on V that makes this basis

orthonormal, which then induces the same isomorphism as that induced by

the dual basis.

In contrast, a canonical isomorphism V ∼= V ∗∗ can be made via the

association v ∈ V ↔ ξ ∈ V ∗∗ with ξ : V ∗ → R defined by ξ (ϕ) ≡ ϕ (v).

Thus V and V ∗∗ can be completely identified (for a finite-dimensional vector

space), and we can view V as the dual of V ∗, with vectors regarded as linear

mappings on 1-forms.

Note that since βλ(eμ) = δλμ and 〈eμ, eλ〉 = ημλ we have

ϕ(v) = ϕλβ
λ(vμeμ)

= ϕμv
μ

= ημλϕ
λvμ 〈eμ, eλ〉

=
〈
ϕ�, v

〉
.

Vector components are often viewed as a column vector, which means that

1-forms act on vector components as row vectors (which then are acted on

by matrices from the right). Under a change of basis we then have the

following relationships:
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Table 3.2.1 Transformations under a change of basis.

Index notation Matrix notation

Basis e′μ = Aλ
μeλ e′ = eA

Dual basis β′μ = (A−1)μλβ
λ β′ = A−1β

Vector components v′μ = (A−1)μλv
λ v′ = A−1v

1-form components ϕ′
μ = Aλ

μϕλ ϕ′ = ϕA

Notes: A 1-form will sometimes be viewed as a column vector, i.e. as

the transpose of the row vector (which is the sharp of the 1-form under a

Riemannian signature). Then we have (ϕ′)T = (ϕA)T = ATϕT .

3.2.2 Tensors

A tensor of type (AKA valence) (m,n) is defined to be an element of the

tensor space

Vm,n ≡ (V ⊗ · · · (m times) · · · ⊗ V )⊗ (V ∗ ⊗ · · · (n times) · · · ⊗ V ∗) .

A pure tensor (AKA simple or decomposable tensor) of type (m,n) is one

that can be written as the tensor product of m vectors and n 1-forms; thus

a general tensor is a sum of pure tensors. The integer (m+ n) is called the

order (AKA degree, rank) of the tensor, while the tensor dimension is

that of V . Vectors and 1-forms are then tensors of type (1, 0) and (0, 1).

The rank (sometimes used to refer to the order) of a tensor is the minimum

number of pure tensors required to express it as a sum. In “tensor language”

vectors v ∈ V are called contravariant vectors and 1-forms ϕ ∈ V ∗ are

called covariant vectors (AKA covectors). Scalars can be considered

tensors of type (0, 0).

3.2.3 Tensors as multilinear mappings

There is an obvious multiplication of two 1-forms: the scalar multiplication

of their values. The resulting object ϕψ : V × V → R is a nondegenerate

bilinear form on V . Viewed as an “outer product” on V ∗, multiplication is

trivially seen to be a bilinear operation, i.e. a (ϕ+ ψ) ξ = aϕξ+aψξ. Thus

the product of two 1-forms is isomorphic to their tensor product.

We can extend this to any tensor by viewing vectors as linear mappings

on 1-forms, and forming the isomorphism
⊗
ϕi �→

∏
ϕi. Note that this

isomorphism is not unique, since for example any real multiple of the prod-

uct would yield a multilinear form as well. However it is canonical, since
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the choice does not impose any additional structure, and is also consistent

with considering scalars as tensors of type (0, 0).

We can thus consider tensors to be multilinear mappings on V ∗ and V .

In fact, we can view a tensor of type (m,n) as a mapping from i <m 1-forms

and j < n vectors to the remaining (m− i) vectors and (n− j) 1-forms.

������  ⊗�  ��  ⊗�  �    ]      (   ���   ���	����         )        �      ���� ����	��  [   �    ]

⊗ ⊗ (][ , , ) = [ ]
�������������������������������������������  �   �������������������������������                      ��

��������������������                         ����������������������������������                       ��

Figure 3.2.1 Different ways of depicting a pure tensor of type (1, 2). The first
line explicitly shows the tensor as a mapping from a 1-form ϕ and a vector v to a
1-form ξ. The second line visualizes vectors as arrows, and 1-forms as receptacles
that when matched to an arrow yield a scalar. The third line combines the
constituent vectors and 1-forms of the tensor into a single symbol T while merging
the scalars into ξ to define ζ, and the last line adds indices (covered in the next
section).

A general tensor is a sum of pure tensors, so for example a tensor of the

form (u⊗ ϕ)+ (v ⊗ ψ) can be viewed as a linear mapping that takes ξ and

w to the scalar ξ (u) ·ϕ (w) + ξ (v) ·ψ (w). Since the roles of mappings and

arguments can be reversed, we can simplify things further by viewing the

arguments of a tensor as another tensor: (u⊗ ϕ) (ξ ⊗ w) ≡ (u⊗ ϕ) (ξ, w) =
(ξ ⊗ w) (u, ϕ) = ξ (u) · ϕ (w).

3.2.4 Abstract index notation

Abstract index notation uses an upper Latin index to represent each

contravariant vector component of a tensor, and a lower index to represent

each covariant vector (1-form) component. We can see from the preceding

figure that this notation is quite compact and clearly indicates the type of

each tensor while re-using letters to indicate what “slots” are to be used in

the mapping.

The tensor product of two tensors Sa
b ⊗ T c

d is simply denoted Sa
bT

c
d,
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and in this form the operation is sometimes called the tensor direct prod-

uct. We may also consider a contraction T ab
bc = T a

c, where two of the

components of a tensor operate on each other to create a new tensor with

a reduced number of indices. For example, if T ab
c = va ⊗ wb ⊗ ϕc, then

T ab
b = ϕ(w) · va.
A (pseudo) inner product on V is a symmetric bilinear mapping, and

thus corresponds to a symmetric tensor gab called the (pseudo) metric

tensor. The isomorphism v ∈ V �→ v� ∈ V ∗ induced by this pseudo

inner product is then defined by va �→ va ≡ gabv
b, and is called index

lowering. The corresponding pseudo inner product on V ∗ is denoted gab,

which provides a consistent index raising operation since we immediately

obtain gab = gacgbdgcd. We also have the relation va = gabvb = gabgbcv
c ⇒

gabgbc = gac = δac, the identity mapping. The inner product of two tensors

of the same type is then the contraction of their tensor direct product after

index lowering/raising, e.g.
〈
T ab, Scd

〉
= T abSab = T abgacgbdS

cd.

� It is important to remember that if v is a vector, the operation vav
a

implies index lowering, which requires an inner product. In contrast,

if ϕ is a 1-form, the operation ϕav
a is always valid regardless of the

presence of an inner product.

A symmetric or anti-symmetric tensor can be formed from a general

tensor by adding or subtracting versions with permuted indices. For exam-

ple, the combination (Tab + Tba) /2 is the symmetrized tensor of T , i.e.

exchanging any two indices leaves it invariant. The anti-symmetrized

tensor (Tab − Tba) /2 changes sign upon the exchange of any two indices,

and yields the original tensor Tab when added to the symmetrized tensor.

The following notation is common for tensors with n indices, with the sums

over all permutations of indices:

Symmetrization: T(a1...an) ≡
1

n!

∑
π

Taπ(1)...aπ(n)

Anti-symmetrization: T[a1...an] ≡
1

n!

∑
π

sign (π)Taπ(1)...aπ(n)

This operation can be performed on any subset of indices in a tensor, as long

as they are all covariant or all contravariant. Skipping indices is denoted
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with vertical bars, as in T(a|b|c) = (Tabc + Tcba) /2; however, note that verti-

cal bars alone are sometimes used to denote a sum of ordered permutations,

as in T|abc| = Tabc + Tbca + Tcab.

3.2.5 Tensors as multi-dimensional arrays

In a given basis, a pure tensor of type (m,n) can be written using compo-

nent notation in the form

v1⊗· · ·⊗vm⊗ϕ1⊗· · ·⊗ϕn ≡ T μ1...μm
ν1...νneμ1⊗· · ·⊗eμm⊗βν1⊗· · ·⊗βνn ,

where the Einstein summation convention is used in the second expression.

Note that the collection of terms into T is only possible due to the defin-

ing property of the tensor product being linear over addition. The tensor

product between basis elements is often dropped in such expressions.

A general tensor is a sum of such pure tensor terms, so that any ten-

sor T can be represented by a (m+ n)-dimensional array of scalars. For

example, any tensor of order 2 is a matrix, and as a linear mapping op-

erates on vectors and forms via ordinary matrix multiplication if they are

all expressed in terms of components in the same basis. Basis-independent

quantities from linear algebra such as the trace and determinant are then

well-defined on such tensors.

� A potentially confusing aspect of component notation is the basis

vectors eμ, which are not components of a 1-form but rather vectors,

with μ a label, not an index. Similarly, the basis 1-forms βν should

not be confused with components of a vector.

The Latin letters of abstract index notation (e.g. T ab
cd) can thus be

viewed as placeholders for what would be indices in a particular basis, while

the Greek letters of component notation represent an actual array of scalars

that depend on a specific basis. The reason for the different notations is to

clearly distinguish tensor identities, true in any basis, from equations true

only in a specific basis.

� In general relativity both abstract and index notation are abused to

represent objects that are non-tensorial. We will see this in Chapter 9.
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� Note that if abstract index notation is not being used, Latin and

Greek indices are often used to make other distinctions, a common

one being between indices ranging over three space indices and indices

ranging over four spacetime indices.

� Note that “rank” and “dimension” are overloaded terms across these

constructs: “rank” is sometimes used to refer to the order of the tensor,

which is the dimensionality of the corresponding multi-dimensional ar-

ray; the dimension of a tensor is that of the underlying vector space,

and so is the length of a side of the corresponding array (also some-

times called the dimension of the array). However, the rank of a order

2 tensor coincides with the rank of the corresponding matrix.

3.3 Exterior forms

Elements of the exterior algebra of the dual space can be viewed in several

ways: as mappings on V , as tensors, or as arrays.

� As we will see, these correspondences are not unique, and in the

literature they are often glossed over or conventions are implicitly as-

sumed.

3.3.1 Exterior forms as multilinear mappings

An exterior form (AKA k-form, alternating form) is defined to be an

element of ΛkV ∗. Just as we formed the isomorphism ⊗ϕi �→ Πϕi to view

tensors as multilinear mappings on V , we can view k-forms as alternating

multilinear mappings on V . Restricting attention to the exterior product

of k 1-forms
∧
ϕi, we define the isomorphism

k∧
i=1

ϕi �→
∑
π

sign (π)

k∏
i=1

ϕπ(i)

=
∑

i1,i2,...,ik

εi1i2...ikϕi1ϕi2 · · ·ϕik = εIϕI ,

where we recall the combinatorial notations from Section 3.1.3.
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☼ The above isomorphism extends the interpretation of forms acting

on vectors as yielding a projection. Specifically, if the parallelepiped

ϕ� =
∧
ϕ�
i has volume V , then ϕ(v1, . . . vk)/V is the volume of the

projection of the parallelepiped v =
∧
vi onto ϕ

�.

Extending this to arbitrary forms ϕ ∈ ΛjV ∗ and ψ ∈ ΛkV ∗, we have

(ϕ ∧ ψ) (v1, . . . , vj+k)

�→ 1

j!k!

∑
π

sign (π)ϕ
(
vπ(1), . . . , vπ(j)

)
ψ
(
vπ(j+1), . . . , vπ(j+k)

)
.

Just as with tensors, this isomorphism is canonical but not unique; but

in the case of exterior forms, other isomorphisms are in common use. The

main alternative isomorphism inserts a term 1/k! in the first relation above,

which results in 1/j!k! being replaced by 1/ (j + k)! in the second. Note that

this alternative is inconsistent with the interpretation of exterior products

as parallelepipeds.

� It is important to understand which convention a given author is

using. The first convention above is common in physics, and we will

adhere to it in this book.

3.3.2 Exterior forms as completely anti-symmetric tensors

An immediate result of this view of forms as multilinear mappings is

that we can also view forms as completely anti-symmetric tensors un-

der the identification of
∏
ϕi with

⊗
ϕi. For example, for a 2-form we

have the equivalent expressions (ϕ ∧ ψ) (v, w)↔ (ϕ⊗ ψ − ψ ⊗ ϕ) (v, w)↔
ϕ (v)ψ (w) − ψ (v)ϕ (w).

Note however that this identification does not lead to equality of the

inner products defined on tensors and exterior forms; instead for two k-

forms we have

〈∧
ϕi,

∧
ψj

〉
form

= det (〈ϕi, ψj〉) ,
while as tensors we have
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〈∧
ϕi,

∧
ψj

〉
tensor

=
〈
εIϕI , ε

JϕJ

〉
tensor

= k! (k − 1)!det (〈ϕi, ψj〉) .
Fortunately, the tensor inner product is almost always expressed explicitly

in terms of index contractions, so we will continue to use the 〈 , 〉 notation
for the inner product of k-forms.

3.3.3 Exterior forms as anti-symmetric arrays

In terms of a basis βμ of V ∗, we can write a k-form ϕ as

ϕ =
1

k!

∑
μ1,...,μk

ϕμ1...μk
βμ1 ∧ · · · ∧ βμk .

� The above way of writing the components is not unique, and others

are in common use, the main alternative omitting the factorial.

The advantage of the expression above is that, with our isomorphism

convention, the component array can be identified with the anti-symmetric

covariant tensor component array in the same basis:

ϕ =
1

k!
ϕμ1...μk

∑
π

sign (π)
∏
i

βπ(i) = ϕμ1...μk
βμ1...μk

Here we have dropped the summation sign in favor of the Einstein sum-

mation convention, and the last equality follows from the anti-symmetry of

the component array.

3.3.4 The Clifford algebra of the dual space

An immediately apparent notational issue with the Clifford algebra of V ∗

is that juxtaposition is used to denote both Clifford multiplication and the

multiplication of the scalar values of forms. However, they can be distin-

guished if the arguments are explicitly noted, e.g. the Clifford product of

1-forms is written ϕψ (v, w) versus the scalar product of values ϕ (v)ψ (w).

We can use the view of exterior forms as mappings to view the Clif-

ford product of 1-forms as ϕψ (v, w) = 〈ϕ, ψ〉 + (ϕ ∧ ψ) (v, w) �→ 〈ϕ, ψ〉 +
ϕ (v)ψ (w)−ψ (v)ϕ (w). Note that in this view the Clifford product is not

a multilinear mapping on V , since there is a leading constant; it is an affine
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mapping (defined in Section 7.4.5). The Clifford multiplication of higher-

grade j- and k-vectors yields a constant plus multivectors of mixed grade,

which in this view are then a sum of multilinear mappings on subsets of

the (j + k) vector arguments.

3.3.5 Algebra-valued exterior forms

We can extend the view of exterior forms as real-valued linear mappings

to define algebra-valued forms. These follow the same construction as

in Section 3.3.1 above, starting from an algebra-valued 1-form Θ̌: V → a,

so that general forms are alternating multilinear maps from k vectors to

a real algebra a whose vector multiplication takes the place of multiplica-

tion in R. Since this vector multiplication may not be commutative, we

need to be more careful in terms of ordering in the isomorphism to ensure

antisymmetry, i.e. for two algebra-valued 1-forms we define

(Θ̌ ∧ Ψ̌)(v, w) ≡ Θ̌(v)Ψ̌(w) − Θ̌(w)Ψ̌(v).

An algebra-valued form whose values are defined by matrices is a

matrix-valued form. Exterior forms that take values in a matrix group

can also be considered as matrix-valued forms, but it must be understood

that under addition the values may no longer be in the group. One can

also form the exterior product between a matrix-valued form and a vector-

valued form. To reduce confusion when dealing with algebra- and vector-

valued forms, we will indicate them with (non-standard) decorations, for

example in the case of a matrix-valued 1-form acting on a vector-valued

1-form,

(Θ̌ ∧ 	ϕ)(v, w) ≡ Θ̌(v)	ϕ(w) − Θ̌(w)	ϕ(v).

� An additional distinction can be made between forms that take val-

ues which are concrete matrices and column vectors (and thus depend

upon the basis of the underlying vector space), and forms that take

values which are abstract linear transformations and abstract vectors

(and thus are basis-independent). We will attempt to distinguish be-

tween these by referring to the specific matrix or abstract group, and

by only using “vector-valued” when the value is an abstract vector.

A notational issue arises in the particular case of Lie algebra valued

forms, where the related associative algebra in the relation [Θ̌, Ψ̌] = Θ̌Ψ̌−
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Ψ̌Θ̌ could also be in use. In this case multiplication of values could use

either the Lie commutator or that of the related associative algebra. We

will denote the exterior product using the Lie commutator by Θ̌[∧]Ψ̌. Some

authors use [Θ̌, Ψ̌] or [Θ̌ ∧ Ψ̌], but both can be ambiguous, motivating us

to introduce our (non-standard) notation. The expression Θ̌ ∧ Ψ̌ is then

reserved for the exterior product using the underlying associative algebra

(e.g. that of matrix multiplication if the associative algebra is defined this

way). For two Lie algebra-valued 1-forms we then have

(Θ̌[∧]Ψ̌) (v, w) = [Θ̌ (v) , Ψ̌ (w)]− [Θ̌ (w) , Ψ̌ (v)]

= Θ̌ (v) Ψ̌ (w)− Ψ̌ (w) Θ̌ (v)− Θ̌ (w) Ψ̌ (v) + Ψ̌ (v) Θ̌ (w) .

Note that [Θ̌, Ψ̌](v, w) = Θ̌(v)Ψ̌(w) − Ψ̌(v)Θ̌(w) is a distinct construction,

as is [Θ̌(v), Ψ̌(w)] = Θ̌(v)Ψ̌(w) − Ψ̌(w)Θ̌(v); neither are in general anti-

symmetric and thus do not yield forms. Also note that e.g. for two 1-forms

Θ̌[∧]Ψ̌ �= Θ̌ ∧ Ψ̌ − Ψ̌ ∧ Θ̌, and (Θ̌[∧]Θ̌) (v, w) = 2[Θ̌ (v) , Θ̌ (w)] does not in

general vanish, so [∧] does not act like a Lie commutator in these respects.

Instead it forms a graded Lie algebra, so that for algebra-valued j- and

k-forms Θ̌ and Ψ̌ we have the graded commutativity rule

Θ̌[∧]Ψ̌ = (−1)jk+1
Ψ̌[∧]Θ̌,

and with an algebra-valued m-form Ξ̌ we have the graded Jacobi identity

(−1)jm (Θ̌[∧]Ψ̌) [∧] Ξ̌ + (−1)kj (Ψ̌[∧]Ξ̌) [∧] Θ̌ + (−1)mk (Ξ̌[∧]Θ̌) [∧] Ψ̌ = 0.

Algebra-valued forms also introduce potentially ambiguous index nota-

tion. If a basis is chosen for the algebra a, the value of an algebra-valued

form may be expressed using component notation as Θμ; or if the algebra

is defined in terms of matrices, an element might be written Θα
β , an ex-

pression that has nothing to do with the basis of a. Then for example an

algebra-valued 1-form might be written Θμ
γ or Θα

βγ .

� In considering algebra-valued forms expressed in index notation,

extra care must be taken to identify the type of form in question, and

to match each index with the aspect of the object it was meant to

represent.
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3.3.6 Related constructions and facts

Exterior forms are usually simply called “forms,” but as we saw in Sec-

tion 2.2.3 this term is also used to describe general multilinear mappings

from vector spaces to scalars. Here we revisit these mappings to give their

equivalent definitions in “tensor language.”

• Bilinear form: a covariant tensor of order 2

• Multilinear form: a covariant tensor of arbitrary order

• Quadratic form: a symmetric covariant tensor of order 2

• Algebraic form: a symmetric covariant tensor of arbitrary order

• Exterior form: an anti-symmetric covariant tensor of arbitrary order

• Pseudo inner product: a nondegenerate completely symmetric covariant

tensor of order 2

• Symplectic form: a nondegenerate completely anti-symmetric covariant

tensor of order 2

The operation of the exterior product by a fixed 1-form (ϕ∧) can be viewed

as a linear mapping from ΛkV ∗ to Λk+1V ∗. We can form a mapping that

goes in the opposite direction, the interior product of ϕ by a vector

v, denoted ivϕ (also denoted v�ϕ). This operation fixes the first vector

argument of a k-form, i.e. (ivϕ) (w2, . . . , wk) ≡ ϕ (v, w2, . . . , wk). The

interior product is thus a linear mapping from ΛkV ∗ to Λk−1V ∗. We define

ivf ≡ 0 for a 0-form f and note that ivΩ = ∗(v�).

� The relationship between the interior and exterior product is not

that of “opposites,” i.e. neither reverses the effect of the other. Instead,

as we will see in Section 6.3.6, the interior product acts as a kind of

derivative.
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Topological spaces

Using the algebraic tools we have developed, we can now move into geom-

etry. Before launching into the main subject of this chapter, topology, we

will examine the intuitive meanings of geometric objects in general, and

the properties that define them.

4.1 Generalizing surfaces

In algebra we added arithmetic properties to sets cumulatively until we

had built enough structure to arrive at the real numbers. We then went

further by considering generalizations of vectors. In geometry, we build up

to a surface in three-dimensional space, and then go further by considering

generalizations of tangent vectors to a surface.

In this section we will give a preview of the basic ideas, with the implicit

assumption that the reader already has some familiarity with objects and

relations that will only be defined later.

Table 4.1.1 Generalizations of surfaces.

Added structure Resulting features

Topological space Open sets Connectedness, holes

Hausdorff space Disjoint neighborhoods Separation between points

Metric space Metric Distances between points

Topological manifold Cartesian charts Coordinates, dimension

Differentiable manifold Differentiable structure Tangent vectors, calculus

Riemannian manifold Riemannian metric Length, angles, volumes

Euclidean surface Embedding in R3 Relation to a higher space

Notes: There are many more messy details here than with algebra. These

will be covered in the following chapters.

51
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4.1.1 Spaces

Let’s start with a Euclidean surface and examine what happens as we dis-

card various properties. A two-dimensional Riemannian surface only in-

cludes intrinsic information, i.e. information that is independent of any

outside structure, and so may not have a unique embedding in R3. For

example, a sheet of paper is flat, and remains intrinsically so even if it is

rolled up; i.e. there is no measurement possible on the surface of the sheet

that can reveal whether it is rolled up or not. A plain manifold includes no

notion of length at all, so the sheet of paper can be arbitrarily stretched,

as long as there are no kinks or singularities introduced. There are other

objects that we will not consider here, but may have application to physics.

For example, an orbifold is a manifold where certain kinds of singularities

are allowed.

�

Figure 4.1.1 A manifold being rolled up, stretched, and kinked.

Short of a manifold structure we can define a series of increasingly more

primitive spaces, but they begin to include examples that are hard to rec-

oncile with our intuitive idea of a “geometric object.” Our main purpose in

studying these, in particular topological spaces, will be to determine what

results only depend on “shape,” i.e. what results only depend on topology,

as opposed to an additional manifold structure.

☼ In this spirit, we will view topological spaces as manifolds with their

Cartesian charts ignored.

4.1.2 Generalizing dimension

An additional aspect of surfaces that is generalized above is that of dimen-

sion. We are intuitively familiar with objects of dimension up to three:

points, curves, surfaces, and volumes. As we build structure in geometry,

we try to keep all our definitions applicable to any number of dimensions.

The Cartesian charts of a manifold determine an unambiguous dimen-

sionality, since they are maps to R
n for a specific integer n. In contrast,
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short of a manifold structure there are several definitions of dimension,

some of which result in non-integer values (called fractal dimensions). It

is also important to note that properties that hold in easily visualized lower

dimensional manifolds do not always remain valid in higher dimensions.

4.1.3 Generalizing tangent vectors

Beyond generalizing surfaces, we can generalize the properties of tangent

vectors to a surface. The tangent vectors at each point of a surface lie in a

two-dimensional space, a copy of R2 at each point. Accordingly, the tangent

vectors of a general n-dimensional differentiable manifold are defined to

lie in a copy of the vector space R
n at each point. As we will see in

subsequent chapters, the space at each point is called the tangent space,

and the tangent spaces at every point taken together are called the tangent

bundle. A topological manifold lacks sufficient structure to define tangents.

We can generalize the idea of tangents further by considering a new

arbitrary vector space to be associated with each point of a manifold, an

“internal space” that has nothing to do with tangents. This is the basic idea

behind gauge theories in physics, and is best described using the language

of fiber bundles.
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Figure 4.1.2 Generalizing tangents on a manifold.

4.1.4 Existence and uniqueness of additional structure

The interplay between successive geometrical structures is an active area

of research with many unknowns. With each added structure we can ask

several questions:

• Can the higher structure always be defined on any object?

• Can more than one non-equivalent structure be defined on a given object?

• Does the structure provide new ways to distinguish between objects?
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The answer to the first question can be negative: for example, there exist

topological spaces that admit no Cartesian charts, and topological mani-

folds that admit no differential structure (in dimension 4 or higher). On

the other hand, all differentiable manifolds admit a Riemannian metric.

The answer to the second question is usually positive: for example, one

can define non-equivalent metrics on a given differential manifold, and even

non-equivalent differentiable structures on a given topological manifold (e.g.

Milnor’s exotic 7-spheres). So we can conclude that in general, additional

structure usually expands the possibilities, but also may eliminate spaces

that are not “nice” enough.

The third question can also be positive, as seen in Donaldson theory

and Seiberg-Witten theory, which use the structure of gauge theories

in physics to create new ways of distinguishing 4-dimensional manifolds.

These theories help show, among other things, that one can define non-

equivalent differentiable structures on R
4, a situation that is only true in

four dimensions.

This brings us to a particularly interesting observation concerning geo-

metrical structure, the fact that the answers to many questions often change

or are most difficult to answer in dimension 3 and/or 4. These are of course

the most common dimensionalities in physics, corresponding to space and

spacetime. This suggests that there might be special features in these di-

mensions that could help explain their prominence in nature.

4.1.5 Summary

In summary, the main geometric objects we will be studying, in order of

increasing structure, are as follows:
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Figure 4.1.3 Geometric objects in order of increasing structure.

4.2 Generalizing shapes

We now consider the simplest structure in the preceding figure, the topolog-

ical space. As is often done, if there is no risk of confusion we will shorten

this to just “space.” Spaces essentially only include the intuitive idea of
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“shape”; the higher structures and ideas present in manifolds and beyond

will be considered in separate chapters.

☼ A good picture to keep in mind for a space is a rubber sheet that

can be stretched or shrunk, but cannot be torn or glued.

4.2.1 Defining spaces

In algebra, we defined how to operate on two elements to get another; in

topology we instead define in a rough sense how close points are to each

other. Specifically, beyond being a set, a topological space includes a

definition of open sets or neighborhoods. This is also called defining a

topology for the space.

One can instead define a numeric distance between points, forming a

metric space, which is automatically a topological space; but in physics

it is generally more profitable to jump from topological spaces directly to

manifolds, which have a natural distance function that can always make

them metric spaces.

The more modern definition of a topology uses open sets, but equivalent

results can be obtained by defining neighborhoods. We will not go into

foundational topics here, but it is worthwhile to be reminded of a few

notions that appear frequently concerning a space X :

• Weaker (AKA coarser) topology: one topology is weaker than another

if it defines less open sets, i.e., every open set in the weaker topology is

also in the stronger (AKA finer) one

• Hausdorff space (AKA T2, satisfying the second “separation axiom”):

any two points have disjoint neighborhoods, i.e. no two points are “right

next to each other”; this is a common condition on spaces to avoid patho-

logical exceptions

• Compact space: every cover has a finite sub-cover; we will not define

these terms here, but this usually translates to closed and bounded

• Connected space: the only subsets that are both open and closed are X

and the empty set; this implies the intuitive idea that X does not consist

of several disjoint pieces

• Continuous mapping f : X → Y : inverse images of open sets are open,

i.e. if B ⊂ Y is open, f−1 (B) ⊂ X is open; this implies the intuitive

properties of continuity
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• Path-connected space: a more restrictive kind of connectivity that for

any two points requires the existence of a continuous mapping from R

that passes through them, i.e. there is a path connecting any two points

• Homeomorphism: a continuous bijective mapping with a continuous

inverse; the most basic equivalency in topology

A topological n-manifold (AKA n-manifold) is then defined to be a

Hausdorff space in which every point has an open neighborhood home-

omorphic to an open subset of R
n. A topological n-manifold with

boundary allows the neighborhoods of points to be homeomorphic to an

open subset of the closed half of Rn, i.e. of the portion of Rn on one side

of and including Rn−1. The points that map to Rn−1 form the boundary

of the manifold, and are a (n− 1)-manifold. A compact manifold without

boundary is often called a closed manifold to distinguish it from a com-

pact manifold with boundary. Most definitions of a manifold usually also

include some additional technical requirement to avoid pathological excep-

tions (e.g. second countable ⇒ paracompact ⇔ metrizable, none of which

we will define here).

Topological spaces include many interesting objects that do not lie on

our path towards manifolds, for example objects constructed by taking the

limit of some iterative process. In this book we will be mainly interested

in results that are valid for spaces with the “nicer” manifold structure. For

example, for manifolds the definitions of path-connected and connected are

equivalent.

4.2.2 Mapping spaces

For algebraic objects, the most basic structure-preserving map was a homo-

morphism. The most basic equivalence in topology is the similarly named

homeomorphism. Homeomorphic spaces are “the same” from a topological

point of view.

☼ One can visualize a homeomorphism as stretching and bending a

space arbitrarily, since length and curvature involve structure beyond

open sets and so are “invisible” from the topological viewpoint.
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Figure 4.2.1 Visualizing homeomorphic spaces.

There exists an even looser equivalency in topology, called a homotopy

equivalency. The essential conceptual difference is that since it is bijec-

tive, a homeomorphism preserves the dimensionality of the object while

stretching and bending, while a homotopy equivalency allows the collapse

of dimensions, while still preserving holes.

To make this concept precise, we first define a homotopy between

spaces, a continuous family of continuous maps ft : X → Y ; i.e. f is con-

tinuous when considered as a function of t as well as when considered as a

function of points in X . Two maps are homotopic if there is a homotopy

between them, i.e. f0 is homotopic to f1 if t runs from 0 to 1.
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X Y
f0

f0(x)
x y

f0.33

f0.33(x)

f0.67

f0.67(x)

f1

f1(x)

Figure 4.2.2 A homotopy ft from X to Y ; the map f0 onto Y is homotopic to
the map f1 which maps all of X to a point y.

A couple of related definitions are:

• Homotopy relative to A (denoted homotopy rel A): a homotopy that

is independent of t on A ⊂ X ; e.g. in the above figure ft is a homotopy

rel x

• Deformation retraction from X to A: a homotopy rel A from the

identity to a retraction from X to A; e.g. if we take Y = X and y = x

above, ft is a deformation retraction from X to x

The precise definition of two spaces being homotopy equivalent, or having

the same homotopy type (denoted X � Y ), is not important for our

purposes; instead, we will state the derived fact that X � Y iff they are

deformation retracts of the same space. A space homotopy equivalent to a

point is then called contractible.



October 20, 2017 17:37 Mathematics for Physics 9in x 6in b3077 page 60

60 Topological spaces

�

Figure 4.2.3 A deformation retraction that collapses the equatorial disc inside
the sphere, the strings, and the solid cube to points; the two spaces are thus
homotopy equivalent.

☼ Homotopy equivalency can be viewed as meaning that we can col-

lapse or expand any parts of the space as well as bending and stretching.

4.3 Constructing spaces

Spaces are often defined by taking a geometric view of non-geometric ob-

jects, as in spaces of functions or spaces of solutions to a differential equa-

tion. However, one can also construct spaces from scratch.

4.3.1 Cell complexes

One important way to construct spaces is using the procedure that defines

a cell complex (AKA CW-complex):

Start with a discrete set of points, called 0-cells:

�
�

�

Attach line segments, called 1-cells, by their boundaries to form the 1-

skeleton:

�

Attach disks, called 2-cells, by their boundaries to form the 2-skeleton:
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�

We can then continue to any dimension by iteratively attaching n-cells,

n-dimensional disks Dn in Rn, by their boundaries, which are (n − 1)-

dimensional spheres Sn−1, to form the n-skeleton.

The first construction above illustrates that a torus with g holes (genus

g) can be built from one 0-cell, 2g 1-cells, and one 2-cell; the second illus-

trates that a sphere Sn is one n-cell attached to one 0-cell; and the third

illustrates that the characteristic maps by which cells are attached can

change the homotopy type of the resulting cell complex (in this case to an

object which is not homotopy equivalent to the torus).

Can we always find a cell complex structure for the spaces we will be

concerned with, mainly manifolds? Some facts are:

• Every compact manifold is homotopy equivalent to a cell complex

• Closed manifolds can always be given a cell complex structure, except in

dimension 4 where the answer is unknown

4.3.2 Projective spaces

We can also define spaces in other ways, and then try to find cell complex

structures for them. For example, the real projective n-space RPn is

defined as the space of all lines through the origin in Rn+1. Each such line

is determined by a unit vector, except that the negative of every vector

is identified with the same line, so we can consider RPn to be Sn with

antipodal points identified.

Alternatively, we can look at RPn as the unit vectors in the upper

hemisphere only, since the lower hemisphere is made up of all negatives of

the upper; except that now, antipodal points of the boundary are identified.

But the upper hemisphere is Dn and its boundary is Sn−1 with antipodal

points identified, or RPn−1. Thus RPn is obtained by attaching an n-cell to

RPn−1, and by induction we can see that RPn has a cell complex structure

with one cell in each dimension up to n.



October 20, 2017 17:37 Mathematics for Physics 9in x 6in b3077 page 62

62 Topological spaces

( (

Figure 4.3.1 Different ways of viewing the real projective 2-space RP2.

The identifications in the above constructions of RP2 are not easily

visualized, since they cannot be embedded in R3; in contrast, RP1 is D1

with boundary S0 having antipodal points identified, i.e. the line segment

with the endpoints identified; in other words RP1 = S1, the circle.

We can also define the complex projective n-space CPn, which is

the space of all lines through the origin in Cn+1. In this case one has a cell

complex structure with one cell in each even dimension up to 2n. HPn can

similarly be defined, but OPn can only be defined for n < 3 due to lack

of associativity. By generalizing the reasoning above, we have CP1 = S2;

HP1 = S4; and OP1 = S8. As manifolds, the projective spaces are all

closed, i.e. compact and without boundary.

4.3.3 Combining spaces

Another way to construct spaces is by combining them in various ways, as

described in the following table. We denote the unit interval [0, 1] by I.

X − Y simply denotes the usual removal of a subset Y .
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Table 4.3.1 Operations on spaces.

Operation Example

Product:

X × Y = all points (x, y) with x ∈ X, y ∈ Y

Example: S1 × S1 = T 2, the torus

Wedge sum:

���� �

X ∨ Y identifies a point from each space

Example: S1 ∨ S1 = the figure eight

Quotient:

���� �

X/A collapses A ⊂ X to a point

Example: S2/S1 = S2 ∨ S2

Suspension:

SX = the quotient of X × I with X × {0} and

X × {1} collapsed to points

Example: SS1 = S2

Join:

�

X ∗ Y = all line segments from X to Y ; more

precisely, X × Y × I with X × Y × {0} collapsed to X,

X × Y × {1} to Y

Example: I ∗ I = solid tetrahedron

In the case of two disjoint connected n-manifolds X and Y , we can also

define the connected sum X#Y , obtained by removing the interiors of

closed n-balls from each and identifying the resulting boundary spheres.

�
Figure 4.3.2 The connected sum of two manifolds removes a ball from each and
identifies their boundaries; in this example we have S2#S2 = S2.
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4.3.4 Classifying spaces

Our real interest is in manifolds, and it is their classification that we will dis-

cuss in this section. In addition, we will refer to the concept of orientability

here, which is defined for topological spaces in the next chapter.

As intuitive 2-dimensional guides, we have now utilized the sphere S2,

the torus T 2, and projective plane RP2. In fact, this essentially exhausts

the topology of closed connected 2-manifolds, a full classification of which

is:

• Orientable: the sphere, the torus, or the connected sum of tori

• Non-orientable: the projective plane, or a connected sum of projective

planes

The Klein bottle, another well-known non-orientable surface (see Figure

5.1.3), is homeomorphic to the connected sum RP2#RP2. Any compact

manifold with boundary is then obtained from these spaces by removing

one or more open disks.

Another way of describing this classification scheme is using handles.

A three-dimensional handlebody is a ball with g handles attached to it,

which is equivalent to the solid torus of genus g. Attaching a handle also

refers to the corresponding operation on the boundary, i.e. adding a cylin-

der to a sphere by removing two disks. The concept of adding handles to a

manifold is generalized in surgery theory.

��

Figure 4.3.3 The ball with one handle is homeomorphic to the solid torus; from
the point of view of boundaries, a sphere with one handle is homeomorphic to
the torus.

The sphere with g handles (equivalently, the torus with g holes) is re-

ferred to as the surface of genus g , with the genus of a handlebody defined

by that of its boundary. In this light, every closed connected 2-manifold is

homeomorphic to a sphere, projective plane, or Klein bottle, possibly with

some number of attached handles.

This simple classification scheme does not extend to higher dimensions,

a clear indication of the limits of intuition in higher dimensional spaces.
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However, the following additional facts can be stated regarding the classi-

fication of manifolds:

• Every connected 1-manifold without boundary is homeomorphic to either

the line R or the circle S1

• The classification of 3-manifolds was accomplished by the 2003 proof of

Thurston’s geometrization conjecture

• It can be proved that the classification of manifolds of dimension four or

greater is impossible

• Many properties can be proved for dimension five or greater, but not for

four dimensions; for example, the simply-connected manifolds of dimen-

sion five or greater are completely classified

The recent classification of 3-manifolds is of particular interest, since it

also proved the long-standing Poincaré conjecture, which generalized to

arbitrary dimension states that every closed n-manifold that is homotopy

equivalent to the n-sphere is homeomorphic to the n-sphere. Since 1904

when the conjecture was first stated, it has been proven for every dimen-

sion except 3, with dimension 4 having been solved in 1982. Every compact

orientable 3-manifold can be obtained by identifying the boundaries of two

handlebodies of the same genus in some way; this is called a Heegaard

splitting (AKA Heegaard decomposition). This does not amount to a clas-

sification, however, since different splittings can yield the same manifold.
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Chapter 5

Algebraic topology

Algebraic topology is concerned with characterizing spaces. The main tools

used to do this, called homotopy groups and homology groups, measure

the “holes” of a space, and so are invariant under homotopy equivalence.

More precisely, these objects are functors from the category of spaces and

continuous maps to that of groups and homomorphisms.

One might hope that some definitive conclusion could be reached if all

of these objects were isomorphic for a given space, but unfortunately this

is not the case: different spaces may have identical measurements.

����#����	���
��������
�����	����

$������������������

$������	���
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��������������

������	����

�

Figure 5.0.1 Algebraic topology differentiates spaces better than proving they
are the same.

Thus the tools of algebraic topology are best viewed as incomplete mea-

surements, or “shadows” of a space: if they are different, we know the

spaces are distinct, but if they are the same, we cannot conclude anything

in general.

67
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5.1 Constructing surfaces within a space

5.1.1 Simplices

As a tool for measuring “holes” in the next section, we will need to construct

n-dimensional surfaces within a space. We will build these surfaces out of

simple triangular pieces called simplices. The idea is to map triangles to

the space, then build surfaces out of these triangles within the space.

• Standard n-simplex Δn: the n-dimensional space defined by the join

of the (n+ 1) unit points in R
n+1

• Singular n-simplex (AKA n-simplex): a mapping σ : Δn → X of the

standard n-simplex into X , the space being studied; the map is only

assumed to be continuous (and so may be singular)

• n-chain: a finite formal linear sum (“chain”)
∑
aασα, where σα are

n-simplices and coefficients aα are integers; under addition of sums the

n-chains form an abelian group denoted Cn(X)

• Boundary homomorphisms ∂n : Cn (X) → Cn−1 (X): takes an n-

chain to the (n − 1)-chain consisting of the oriented sum of boundaries;

also denoted simply ∂
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Figure 5.1.1 The boundary homomorphism of a singular 2-simplex to three
1-simplices.

By oriented sum, it is meant that we desire a coherent orientation in X ;

i.e. the boundary of a boundary should vanish. We can achieve this in any

dimension by taking the boundaries ∂Δn as oriented according to vertex

order, and then defining ∂σ (∂Δn) ≡ ∑
(−1)i σ [Δn − vi]. This formalism

has the effect of reversing the “backwards” boundaries by preceding them

with a minus sign, as can be seen with the heavier weight arrows in the

preceding figure for a 2-simplex.

5.1.2 Triangulations

The point of introducing orientation is to use n-chains to describe arbitrary

n-dimensional surfaces in X composed of n-simplices. By constructing such

surfaces using adjacent simplices, internal boundaries can cancel when they

consist of two boundaries in opposite directions. Constructing a surface out

of simplices in this way is called a triangulation.
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Figure 5.1.2 Triangulations of a sphere and a cylinder using two simplices, and
a sheet with hole using 15 simplices.

Many intuitive facts are accurately reproduced in this formal system,

and extended to arbitrary dimension in a consistent way.

5.1.3 Orientability

We now define an orientable space as one that has a triangulation with no

internal boundary. So all the surfaces in the previous figure are orientable,

since all the internal boundaries cancel. In a non-orientable surface, any

triangulation will have at least one internal boundary that does not cancel.

For example, the Möbius strip (see Figure 10.2.1) is non-orientable, since

starting from a cylinder, the boundary one cuts, flips, and glues will not

cancel.

The simplest closed non-orientable surface is the Klein bottle. We

can see from the preceding figure that a triangulated cylinder has external

boundaries oppositely oriented. Thus in order to cancel internal boundaries

when forming a closed surface out of cylinders, each new cylinder must

begin with a boundary of the same orientation. In the following figure we

illustrate building the Klein bottle out of cylinders, noting that upon return

to the “mouth” at left from the “inside,” we are faced with a non-canceling

internal boundary.
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Figure 5.1.3 A triangulation of the Klein bottle will have a non-canceling
boundary, as seen here by following the leading edge of an oriented cylinder
around the bottle.

The other familiar non-orientable space we’ve encountered is RP2. In

general, RPn is orientable if n is odd, and is non-orientable if n is even.

5.1.4 Chain complexes

A fundamental intuitive fact reproduced in this formalism is that the

boundary of a boundary is zero. A useful algebraic generalization of this

idea is the chain complex, defined to be a sequence of homomorphisms of

abelian groups ∂n : Cn → Cn−1 with ∂n∂n+1 = 0. In our case the abelian

groups Cn are the n-chains, and the chain complex can be illustrated as

follows:

��!� �� ��−�

∂��� ∂���

∂∂��� �����

∂�� ∂�

�

Figure 5.1.4 The chain complex of n-chains of simplices via boundary homo-
morphisms. The figures are representative of general n-chains, which of course
can be much more complicated.

5.2 Counting holes that aren’t boundaries

5.2.1 The homology groups

We can now define the homology groups (AKA singular homology groups).

In the below definitions, Ker denotes kernel and Im denotes image.
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• Cycle: an element of Ker∂n, i.e. an n-surface in X that has no boundary

• Boundary: an element of Im∂n+1, i.e. the boundary of an (n+1)-volume

in X

• Homology class: an element of the homology group Hn(X) ≡
Ker∂n/Im∂n+1, i.e. a coset consisting of homologous n-cycles that

can all be obtained from each other by adding the boundary of some

(n+ 1)-volume in X

☼ We can think of a typical cycle as a loop for n = 1 or a sphere for

n = 2. Then the typical boundary is the chain of n-cycles that form

the edge of an arbitrary surface for n = 1 or the surface of an arbitrary

volume for n = 2.
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Figure 5.2.1 Each element of Hn consists of cycles whose difference is a bound-
ary.

The cylinder and punctured plane in Figure 5.1.2 depict examples of

homologous loops, two 1-chains that are the boundary of a 2-chain. The

abelian group Hn(X) is then generated by the cosets of non-homologous

n-cycles, thus counting the number of “n-dimensional holes” in X .
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5.2.2 Examples

The construction of the homology groups is somewhat complicated, but the

idea behind it is quite intuitive. For simple spaces, we expect that Hn will

be a direct product of Z components, one for each “n-dimensional hole” in

X that is not the boundary of a (n + 1)-volume, since each such hole can

be wrapped around any number of times in either direction, and none of

these wrappings are homologous.

Figure 5.2.2 The cycle c1 is the boundary of a disc, and so is homologous to
a point. A hole in X prevents c2 from being the boundary of any surface. c3
is homologous to c4 since their difference is the boundary of an annulus, thus
preventing the hole from being counted twice. Thus H1 (X) = Z⊕Z. Note that a
cycle around both holes (not depicted) would be homologous to the cycle c2 + c4.

The best way to see this is to consider some examples.
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Table 5.2.1 Homology groups of simple geometric shapes.

Homology Group Diagram

H1(S1) = Z

A loop can be mapped to a circle by wrapping around any number of

times in either direction

H1(S2) = 0

�

Any circle on the sphere is the boundary of a disc on the sphere

H2(S1) = 0

Any sphere mapped along the edge of a circle is always the boundary

of a ball also mapped along the circle

H1(T 2) = Z⊕ Z

�

The two circles that make up the 1-skeleton of a torus are not

homologous and thus a loop can wrap around either circle any

number of times in either direction

H2(T 2) = Z

�
A torus can be mapped to itself by wrapping around any number of

times in either direction

These calculations reflect the close relationship between homology

groups and cell complex structure. Since the nth homology group is de-

fined in terms of n-surfaces, we intuitively expect Hn(X) to only depend

on the (n+1)-skeleton of X (which recall includes all k-cells for k ≤ n+1),

and this is in fact true if X is a cell complex. Thus if X is a cell complex

with finitely many cells, for example a closed manifold, Hn(X) is a finitely

generated group.

For example, inductively extending the first three observations to

spheres in arbitrary dimension shows that Hn(S
d) = Z if n = d, 0 oth-

erwise. For the d-dimensional torus T d, Hn(T
d) is the direct sum of c

copies of Z with c the binomial coefficient d choose n.
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5.2.3 Calculating homology groups

It should be kept in mind that although homology, like most of algebraic

topology, is geometrically inspired, its algebraic constructions may or may

not have ready geometric interpretations in odd situations or higher dimen-

sions. Despite the “sensible” results above, counter-intuitive facts caution

us to always deduce these and other measurements of a space with mathe-

matical rigor. For example, the “hole” interpretation of homology does not

easily extend to non-orientable surfaces:

• H1

(
RP2

)
= Z2, since if we view RP2 as D2 with boundary S1 having

antipodal points identified, the path connecting two antipodal points is

a “loop,” but any two such loops together is homologous to a point

• H2

(
RP2

)
= 0, since any triangulation of RP2 has a boundary, the real

projective plane being non-orientable

• In general, any non-orientable manifold Mn has Hn(M
n) = 0

As one might guess from the examples considered so far, it is also a fact

that the topology of 2-manifolds is completely determined by homology.

This circumstance is certainly not true in higher dimensions, as we noted

in the introduction to this chapter.

There are various relations that can help in calculating homology

groups. For example, an immediate result is that if X has connected

components Xi, Hn(X) =
⊕

iHn (Xi). Another is the excision theo-

rem, which states that for Z ⊂ A ⊂ X , Hn (X − Z,A− Z) ∼= Hn (X,A).

Here Hn (X,A) is a relative homology group, defined using n-chains

Cn (X,A) ≡ Cn (X) /Cn(A) in place of Cn (X); this construction essen-

tially ignores any holes in A ⊂ X . Thus the excision theorem states the

intuitively expected fact that we can delete any portion of a subspace A

without affecting Hn (X,A), which already ignores holes in A.

5.2.4 Related constructions and facts

There are many homological tools used in algebraic topology. Some variants

of the homology groups include:

• Homology group with coefficients: for an abelian group G,

Hn (X ;G) is defined using n-chains Cn (X ;G) with coefficients in G in-

stead of Z

• Reduced homology groups: a slight variant that avoids the result

H0 = Z for points while keeping the higher homology groups the same
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• Local homology of X at A: Hn (X | A) ≡ Hn (X,X −A) depends only
on a neighborhood of A in X

• Simplicial homology, cellular homology, etc.: more easily con-

structed homology theories that are only valid for certain types of spaces;

all can be shown to be equivalent to singular homology for those spaces

• Cohomology groups: Hn (X ;G) are dual constructions based on the

cochain groups Cn (X ;G) ≡ C∗
n = Hom(Cn, G), the group of ho-

momorphisms from Cn to some abelian group G; a homomorphism

Hn (X ;G) → Hom(Hn (X ;G) , G) can be constructed which is surjec-

tive, becoming an isomorphism if G is a field

• Cohomology ring: H∗ (X ;R) is a direct sum of the cohomology groups

Hn (X ;R) with coefficients in a ring R; multiplication is defined using

the cup product, a product between the Hn (X ;R)

Some related constructions include:

• Betti number: bn ≡ the number of Z summands if Hn(X) is written

Z⊕· · ·⊕Zc1⊕Zc2⊕Zc3⊕· · · , where the ci are called torsion coefficients;

in a cell complex, bn is just the number of n-cells

• Euler characteristic: the alternating sum of Betti numbers χ = b0 −
b1 + b2 − · · · , i.e. for a cell complex the number of even cells minus

the number of odd cells; thus a compact connected surface has genus

g = (2− χ) /2
• Brouwer degree (AKA winding number for S1): any mapping φ : Sn →
Sn induces a homomorphism on Hn(S

n) = Z of the form z → az; the

integer a is the Brouwer degree of the map, essentially the number of

times the mapping wraps around the sphere

• Moore space: given an abelian group G and an integer n > 0, the space

M (G,n) is constructed to have Hn = G and Hi = 0 for i �= n

5.3 Counting the ways a sphere maps to a space

Besides homology, the other major measuring tool in algebraic topology

is that of the homotopy groups πn (X). These functors count the number

of non-homotopic maps existing from Sn to the space X . Recalling the

definition of homotopic from Section 4.2.2 on page 58, we see that this is

essentially a count of the classes of mapped spheres that cannot be deformed

into each other.

Although the construction of the homotopy groups is much simpler than

that of the homology groups, what they actually measure in the space is

less easily described in an intuitive way, for example in terms of “holes.”
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This is apparent from the fact that like the homology groups, πi (S
n) = Z

for i = n and vanishes for i < n; however for i > n we have Hi(S
n) = 0

as we would intuitively expect, while πi (S
n) yields a complicated table of

groups that comprises an area of active research. This is representative of

the fact that the homotopy groups are in general much harder to compute

than the homology groups.

5.3.1 The fundamental group

The simplest homotopy group is the fundamental group π1 (X), which

counts how many ways a loop can be mapped into a path-connected space

X . More precisely, we define π1 (X,x) to be the set of all homotopy classes

of parameterized loop mappings that begin and end at a basepoint x. For

a path-connected space we can add a path from x to any other point and

back as part of the loop, so that π1 (X,x) is independent of x and is written

π1 (X).
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Figure 5.3.1 For a path-connected space X, every loop with basepoint x is
homotopic to a loop with basepoint y, so that π1 (X, x) = π1 (X, y) = π1 (X).

π1 (X) becomes a group by defining multiplication as the composition

of loop paths from a given basepoint. Technically, this is implemented by

dividing the line segment I in half, and applying the first mapping f to

the first half segment, g to the second half. Note that this means that

homotopies of fg may abandon the midway mapping to the basepoint; for
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example, the inverse of a path is simply the same path traversed backwards.
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Figure 5.3.2 Homotopies of loop products h = f · g are only required to keep
the endpoints of h mapped to the basepoint, allowing the midpoint f0.5 = g0.5 to
abandon the basepoint. Above we have g = f−1, the inverse of f , in which case
the midpoint leaving the basepoint results in the product f · f−1 retracting to a
point.

So for example π1
(
S1

)
= Z, since a loop can be mapped around the

circle any number of times in either direction. For the figure eight S1 ∨S1,

a loop mapped around one circle cannot be homotopically altered to go

around the other. Thus each homotopically distinct map can be viewed as

a “word” with each “letter” an integer number of loops around each circle,

i.e. we arrive at the free product π1
(
S1 ∨ S1

)
= Z ∗ Z. This example also

shows that in general π1 is non-abelian, unlike H1 and as we will see below

unlike all other πn. In fact, π1 is very general indeed: for any arbitrary

group G one can construct a space X for which π1 (X) = G.

A path-connected space with trivial fundamental group is called simply

connected. The name reflects the fact that in such a space there is only

one homotopically distinct way to form a path between any two points.

� Note that there are other definitions of “simply connected” in use;

some do not require the space to be connected.
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5.3.2 The higher homotopy groups

Generalizing the fundamental group to higher dimensions yields the ho-

motopy groups πn(X), which count how many ways Sn can be mapped

into a path-connected space X .

Group multiplication is similarly implemented by dividing the n-cube

In in half along one dimension, and applying the maps to be multiplied to

each half. Just as we required homotopies of loops to map endpoints to

the basepoint, we here require the boundary of In to map to the basepoint.

Unlike π1, πn is abelian for n > 1. This is because there is no “room” in

one dimension to homotopically swap the spheres as there is in two or more

dimensions.
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Figure 5.3.3 In more than one dimension, maps from the two halves of In can
be homotopically swapped, making πn abelian. The shaded surfaces in the figure
are mapped to the basepoint x along with the boundaries.

Although the homotopy groups as a measuring tool share the incom-

pleteness that characterizes all of algebraic topology, i.e. equal πn do not

guarantee homotopy equivalent spaces, there is a theorem that comes close.
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Whitehead’s theorem states that a map between cell complexes that in-

duces isomorphisms on all πn is a homotopy.

5.3.3 Calculating the fundamental group

There are several tools that facilitate calculating the fundamental group.

Van Kampen’s theorem can be used to compute the fundamental group

of a space in terms of simpler spaces it is constructed from. If certain con-

ditions are met, the theorem states that for X =
⋃
Aα, π1 (X) = ∗

α
π1 (Aα),

the free product of the component fundamental groups. Under less restric-

tive conditions this becomes a factor group of the free product. For example

the result for the figure eight S1 ∨ S1 can be generalized to the statement

that the fundamental group of any wedge product is the free product of the

fundamental groups of its constituents.

We also have the fact that for path-connected X and Y , π1 (X × Y ) =

π1 (X) × π1 (Y ), so that for the torus we have π1
(
T 2

)
= π1

(
S1 × S1

)
=

π1
(
S1

)×π1 (S1
)
= Z×Z, a case in which the fundamental group is abelian.

For path-connected spaces X , H1(X) is the abelianization of π1 (X), as for

example is the case for the figure eight. In particular, H1(X) and π1 (X)

are identical for Sn, T n, and CPn.

5.3.4 Calculating the higher homotopy groups

Calculating the homotopy groups beyond the fundamental group is usually

much more difficult, since Van Kampen’s theorem doesn’t hold and exci-

sion type theorems are much weaker. An important tool is the relationship

between homotopy and homology groups. For example, the Hurewicz

theorem states that for a simply connected space, the first nonzero homo-

topy group πn is isomorphic to the first nonzero homology group Hn in the

same dimension.

Some specific results are that for n > 1, πn(RP
d) = πn(S

d), while the

higher homotopy groups vanish for the Klein bottle and the torus of any

dimension T n.

5.3.5 Related constructions and facts

Some constructions related to the homotopy groups include:

• Relative homotopy groups: πn (X,A, x0) is defined to be all homo-

topy classes of maps (Dn, ∂Dn, s0) → (X,A, x0) where s0 ∈ Sn−1 and

A ⊂ X
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• Stable homotopy group: πs
i (X) is defined to be the group that the

sequence πi (X) → πi+1 (SX) → πi+2

(
S2X

) → · · · eventually arrives

at, recalling from Section 4.3.3 the suspension SX ; a major unsolved

problem in algebraic topology is computing the stable homotopy groups

of the spheres

• n-connected space: indicates that πi = 0 for i ≤ n; so 0-connected =

path-connected, 1-connected = simply connected

• Action of π1 on πn: the homomorphism π1 → Aut (πn) defined by

taking the basepoint of πn around the loop defined by each element of π1
• n-simple space: indicates trivial action of π1 on πn; a simple (AKA

abelian) space is n-simple for all n⇒ π1 is abelian

• Eilenberg-MacLane space: a space K (G,n) constructed to have one

nontrivial πn = G, a rare case of πn uniquely determining the homotopy

type; for any connected cell complexX , one can construct aK (G,n) such

that the homotopy classes of maps from X to K (G,n) are isomorphic to

Hn (X ;G), thus turning homology groups into homotopy groups
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Manifolds

In studying spaces, we considered the locally Euclidean structure of topo-

logical manifolds as defining a subset of spaces that were “nicer,” meeting

the minimum requirements of our idea of a geometrical “shape” such as in-

tegral dimension. By slightly narrowing our consideration to differentiable

manifolds, we can essentially graft calculus onto our “rubber sheet.” The

constructions of coordinates and tangent vectors enable us to define a fam-

ily of derivatives associated with the concept of how vector fields change

on the manifold. The challenge is in defining all these objects without an

ambient space, which our intuitive picture normally depends upon.

� Note that a differentiable manifold includes no concept of length

or distance (a metric), and no structure that allows tangent vectors at

different points to be compared or related to each other (a connection).

It is important to remember that nothing in this chapter depends upon

these two extra structures.

When dealing with manifolds, there are two main approaches one can

take: express everything in terms of coordinates, or strive to express ev-

erything in a coordinate-free fashion. In keeping with this book’s attempt

to focus on concepts rather than calculations, we will take the latter ap-

proach, but will take pains to carefully express fundamental concepts in

terms of coordinates in order to derive a picture of what these coordinate-

free tools do. Facility in moving back and forth between these two views is

a worthwhile goal, best accomplished by combining the material here with

a standard text on differential geometry or general relativity.

83
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6.1 Defining coordinates and tangents

6.1.1 Coordinates

Recall that the key feature of a topological manifoldMn is that every point

has an open neighborhood homeomorphic to an open subset of Rn. To make

this precise we define the following terms.

• Coordinate chart (AKA parameterization, patch, system of coordi-

nates): a homeomorphism α : U → R
n from an open set U ⊂ Mn to an

open subset of Rn

• Coordinate functions (AKA coordinates): the maps aμ : U → R that

project α down to one of the canonical Cartesian components

• Atlas: a collection of coordinate charts that cover the manifold

• Coordinate transformation (AKA change of coordinates, transition

function): in a region covered by two charts, we can construct the map

α2 ◦ α−1
1 : Rn → Rn

��
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Figure 6.1.1 In the intersection of two coordinate charts we can construct the
coordinate transformation, a homeomorphism on R

n.

� A coordinate chart is sometimes defined to be the inverse map

α−1 : Rn → M valid on an open subset of Rn, with similar changes

to related definitions such as coordinate functions.

The coordinate transformations are simply maps on Euclidean space, so

we can require them to be infinitely differentiable (AKA smooth, C∞). An

atlas whose charts all have smooth coordinate transformations determines

a differentiable structure, which turns the topological manifold into a
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differentiable manifold (AKA smooth manifold). Two differential struc-

tures are considered to be equivalent if the union of their atlases still results

in smooth coordinate transformations. Unless otherwise noted, from this

point forward “manifold” will mean differentiable manifold.

A complex manifold is defined to have an atlas of charts to C
n whose

coordinate transformations are analytic. Complex n-manifolds are a sub-

set of real 2n-manifolds, but atlases are highly constrained since complex

analytic functions are much more constrained than smooth functions. By

“manifold” we will always mean a real manifold in this book.

With the addition of a differentiable structure, one can define the vari-

ous tools of calculus on manifolds in a straightforward way. Differentiable

functions f : U → R require the map f ◦ α−1 : R → R to be differentiable,

and differentials ∂/∂aμ are defined at a point p ∈ U by

∂/∂aμ |p f ≡ ∂/∂xμ
(
f ◦ α−1 (x)

) |x=α(p) .

where x ∈ Rn. All of the usual relations of calculus hold with these defini-

tions.

� To avoid clutter, a common abuse of notation is to use xμ to de-

note any or all of three quantities: the point p ∈ M , the coordinate

functions aμ : M → R, and the Rn n-tuplet xμ = aμ (p). Similarly, the

differential ∂/∂aμ is often denoted ∂/∂xu. We will follow these conven-

tions going forward, but when dealing with fundamental definitions or

pictures, it is important to distinguish these very different quantities

from each other. Another shortcut is to denote differentials by ∂μ; as

with basis vectors, it is important to remember that these are labels,

not component indices.

6.1.2 Tangent vectors and differential forms

The tangent space TpU at a point p ∈ U is defined to be the vector space

spanned by the differential operators ∂/∂aμ |p. A tangent vector v ∈ TpU
can then be expressed in tensor component notation as v = vμ∂/∂aμ, so

that v (aμ) = vμ. The tangent vector ∂/∂aμ |p applied to a function f can

be thought of as “the change of f in the direction of the μth coordinate line

at p.”
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Figure 6.1.2 In a particular coordinate chart, a tangent vector v operates on a
function by taking the derivative of the composite function in R

n in the direction
of vμ∂/∂aμ.

Thus at a point p, we have

vμ
∂

∂aμ
(f) = vμ

∂

∂xμ
(
f ◦ α−1 (x)

)
,

where x = α(p). The coordinate line α−1 (aμ (p) + tvμxμ) is a parameter-

ized curve on M , and thus it and the tangent vector itself are coordinate-

independent objects. In another coordinate chart, the coordinate line that

yields the same operator on functions near p can be seen to correspond to

the familiar transformation of vector components

v = vμ
∂

∂aμ
=

(
vλ
∂bμ

∂aλ

)
∂

∂bμ
.

We can consider the point “p moved in the direction v” by abusing notation

to write pμ + tvμ in place of α−1 (aμ (p) + tvμxμ); this is a coordinate-

dependent expression, but in the limit ε → 0 we can unambiguously write

p+ εv to refer to the concept “p moved infinitesimally in the direction v,”

which is coordinate-independent.



October 20, 2017 17:37 Mathematics for Physics 9in x 6in b3077 page 87

6.1. Defining coordinates and tangents 87

�

�

���������������
���������������

	�!�∂�∂���!���∂�∂��

�

Figure 6.1.3 A tangent vector v in terms of two different coordinate charts.
vμ = (1, 0) in chart α with coordinate functions aμ (p) = xμ, and vμ = (2, 0) in
chart β with coordinate functions bμ (p) = yμ. The divergent coordinate lines
show that the concept of moving a point “in the direction of v” can only be
coordinate-independent in the infinitesimal limit.

The set of all tangent spaces in a region U is called the tangent bundle,

and is denoted TU . A (smooth, contravariant) vector field on U is then a

tangent vector defined at each point such that its application to a smooth

function on U is again smooth. Similarly, a covariant vector field is

a 1-form defined at each point such that its value on a vector field is a

smooth function, and a tensor field is the tensor product of vector fields

and covariant vector fields.

� Tensor fields (including vector fields and covariant vector fields) are

written using the same notation as tensors, making it important to

distinguish the two situations. In particular, one can define a (pseudo)

metric tensor field, which is then usually referred to as simply a metric.

Note that a tensor field must remain a tensor locally at any point p,

i.e. it must be a multi-linear mapping. For example, a covariant tensor

field can only depend upon the values of its vector field arguments at p,

since otherwise one could add a vector field that vanishes at p and obtain

a different result. This means that operators such as the derivatives on

manifolds we will see in Section 6.3 and Chapter 9 cannot usually be viewed

as tensors, since they measure the difference between arguments at different

points.

Since vectors are operators on functions, we can apply one vector field

to another. Following the practice of using ∂/∂xu to refer to ∂/∂aμ, this
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can be used to define the Lie bracket of vector fields

[v, w] (f) ≡ v(w(f)) − w(v(f))

⇒ [v, w] =

(
vμ
∂wν

∂xμ
− wμ ∂v

ν

∂xμ

)
∂

∂xν
.

Here we have used the equality of mixed partials, and can easily verify

that [v, w] is anti-commuting and satisfies the Jacobi identity. Since this

expression is coordinate-independent, [v, w] is a vector field and we can thus

view vect (M), the set of all vector fields on M , as the infinite-dimensional

Lie algebra of vector fields on M , with vector multiplication defined by

the Lie bracket.

Having defined vector and tensor fields on manifolds, we can now define

a differential form as an alternating covariant tensor field, i.e. an exterior

form in Λ (TpU) smoothly defined for every point p.

� Just as tensor fields are usually referred to as simply tensors, dif-

ferential forms are usually referred to as simply forms, and a k-form

is written simply ϕ ∈ ΛkM . It is important to remember that in the

context of manifolds, a k-form is an exterior form smoothly defined on

k elements of the tangent space at each point, i.e. an anti-symmetric

covariant k-tensor field.

On a differentiable manifold, the existence of k-forms makes possible a

more concrete definition of orientability: a manifold Mn is orientable iff

there exists a non-vanishing n-form. Such a form is called a volume form

(AKA volume element), since as we recall from Section 3.1.3 it gains a

Jacobian-like determinant factor under invertible linear transformations.

� The term “volume form” or “volume element” is sometimes defined

in physics to reflect the intuitive idea of a form which returns the

volume spanned by its argument vectors; however, volume is always

positive, so that in this usage we are more accurately referring to a

volume pseudo-form whose value is the absolute value of the volume

form as we have defined it.
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6.1.3 Frames

A frame eμ on U ⊂ Mn is defined to be a tensor field of bases for the

tangent spaces at each point, i.e. n linearly independent smooth vector

fields eμ.

�
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Figure 6.1.4 A frame eμ is n smooth vector fields that together provide a basis
for the tangent space at every point.

The concept of frame has a particularly large number of synonyms,

including comoving frame, repère mobile, vielbein, n-frame, and n-bein

(where n is the dimension). The dual frame, the 1-forms βμ corresponding

to a frame eμ, is also often simply called the frame.

When using particular coordinates xμ, the frame eμ = ∂/∂xμ is called

the coordinate frame (AKA coordinate basis or associated basis); any

other frame is then called a non-coordinate frame. A holonomic frame

is a coordinate frame in some coordinates (though perhaps not the ones

being used); this condition is equivalent to requiring that [eμ, eν ] = 0, a

result which is sometimes called Frobenius’ theorem. An anholonomic

frame is then a frame that cannot be derived from any coordinate chart in

its region of definition. Using a non-coordinate frame suited to a specific

problem is sometimes called the method of moving frames.

� Note that the distinction between holonomic and coordinate frames

as defined here is often not made.
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Figure 6.1.5 A non-coordinate frame is not tangent to the coordinate functions
being used, while an anholonomic frame cannot be derived from any coordinate
chart.

A frame cannot usually be globally defined on a manifold. A simple

way to see this is by the example of the 2-sphere S2. Any drawing of

coordinate functions on a globe will have singularities, such as the north

and south poles when using latitude and longitude; these are points where

the associated coordinate frame will either be undefined or will vanish. In

general, there is no non-zero smooth vector field that can be defined on Sn

for even n (this is sometimes called the hedgehog theorem, AKA hairy

ball theorem, coconut theorem).

Figure 6.1.6 The hedgehog theorem for S2, showing that any attempt to “comb
the hair of a hedgehog” yields bald spots, in this case at the poles.

A manifold that can have a global frame defined on it is called paral-

lelizable. Some facts regarding parallelizable manifolds include:

• All parallelizable manifolds are orientable (and therefore have a volume

form), but as we saw with S2 the converse is not in general true

• Any orientable 3-manifoldM3 is parallelizable⇒ any 4-manifoldM3×R

is parallelizable (important in the case of the spacetime manifold)

• Of the n-spheres, only S1, S3, and S7 are parallelizable (this can be seen

to be related to C, H, and O being the only normed finite-dimensional

real division algebras beyond R)
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• The torus is the only closed orientable surface with a non-zero smooth

vector field

6.1.4 Tangent vectors in terms of frames

It is important to remember that in following our intuitive picture of a

Euclidean surface, our central definitions were manifolds M and tangent

vectors v. These are the “real” intrinsic objects, while their expressions in

terms of a particular coordinate chart and frame are arbitrary. Coordinates

and frames are “temporary” tools we use to “componentize” points and

tangents on a manifold.

In particular, if a manifold is defined in terms of a set of coordinate

functions that feature a singularity, this singularity may be due to the

coordinates extending outside of their valid chart, telling us nothing about

whether the manifold itself has a singularity. Every point of a well-defined

differentiable manifold always has a local coordinate chart and tangent

vectors.

For example, given the typical spherical coordinate chart for S2 the

associated frame will be singular at the poles, since they are outside of U

for that chart; nevertheless, tangent vectors are well-defined at these points,

and can be expressed perfectly normally in a different chart.

Figure 6.1.7 A manifold and tangent vector expressed in terms of different
coordinate functions and frames.

In the above figure, we see the following situations depicted:

• v = e1 + e2 = ∂/∂x1 + ∂/∂x2 (expressed in a coordinate frame)

• v = e′1 − e′2 = ∂/∂x′1 − ∂/∂x′2 (using a different coordinate frame)

• v = e′′1 + 3e′′2 = ∂/∂x′1 − ∂/∂x′2 (in a non-coordinate frame)

The final figure depicts coordinate functions that are singular at the point
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of interest; the manifold and vector are still well-defined, but the tangent

space at this point cannot be expressed in terms of this coordinate chart.

� In general, when working with objects on manifolds, it is important

to keep clearly in mind whether a given symbol represents a vector,

form, or function (0-form); whether any given index is a label, an ab-

stract index or a component index in a particular frame or coordinates;

and whether the object is a field with a value at each point, or is only

valid at a particular point. Any calculation can always be made ex-

plicit by expressing everything in terms of functions and differential

operators on them.

6.2 Mapping manifolds

6.2.1 Diffeomorphisms

In the same way that spaces or topological manifolds are equivalent if

they are related by a homeomorphism, differentiable manifolds are equiv-

alent if they are related by a diffeomorphism, a homeomorphism that

is differentiable along with its inverse. As usual we define differentiabil-

ity by moving the mapping to R
n, e.g. Φ: M → N is differentiable if

αN ◦ Φ ◦ α−1
M : Rm → Rn is, where αM and αN are charts for M and N .

Intuitively, a diffeomorphism like a homeomorphism can be thought of as

arbitrary stretching and bending, but it is “nicer” in that it preserves the

differentiable structure.

� It is important to distinguish between coordinate transformations,

which are locally defined and so may have singularities outside of a

given region; and diffeomorphisms, which are globally defined and form

a group. One can define a coordinate transformation on a region of a

manifold that avoids any resulting singularities, but a diffeomorphism

must be smooth on the entire manifold.

6.2.2 The differential and pullback

If we consider a general mapping between manifolds Φ: Mm → Nn, we can

choose charts αM : M → Rm and αN : N → Rn, with coordinate functions

xμ and yν , so that the mapping αN ◦Φ: M → Rn can be represented by n
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functions Φν : M → R. This allows us to write down an expression for the

induced tangent mapping or differential (aka pushforward, derivative)

dΦ: TM → TN (also denoted TΦ or Φ∗ or sometimes simply Φ if it is clear

the argument is a tangent vector). For a tangent vector v = vμ∂/∂xμ at a

point p ∈M we define

dΦ (v)|p ≡ vμ
∂Φν

∂xμ
∂

∂yν

∣∣∣∣
Φ(p)

.

This definition can be shown to be coordinate-independent and to follow our

intuitive expectation that mapped tangent vectors stay tangent to mapped

curves. If M = N and Φ is the identity, dΦ is just the vector component

transformation in Section 6.1.2. The matrix JΦ(x) ≡ ∂Φν/∂xμ is called the

Jacobian matrix (AKA Jacobian).

If Φ is a diffeomorphism, dΦ is an isomorphism between the tangent

spaces at every point in M . The inverse function theorem says that the

converse is true locally: if dΦp is an isomorphism at p ∈M , then Φ is locally

a diffeomorphism. In particular, this means that if in some coordinates the

Jacobian matrix is nonsingular, then αN ◦Φ◦α−1
M represents a locally valid

coordinate transformation and Φν = yν .

A mapping between manifolds Φ: Mm → Nn also can be used to natu-

rally define the pullback of a form Φ∗ : ΛkN → ΛkM by Φ∗ϕ (v1, . . . , vk) =

ϕ (dΦ (v1) , . . . , dΦ (vk)), where the name indicates that a form on N can

be “pulled back” to M using Φ. Note that the composition of pullbacks is

then Ψ∗Φ∗ϕ = (ΦΨ)∗ϕ.

Mm

�:M�N

�
Nn

p �(p)

v d�:TM�TN w = d�(v)

�(w)���(v)
pullback

Figure 6.2.1 Forms ϕ on N are pulled back to M by sending argument vectors
to N using dΦ.

Note that for a mapping f : M → R, we have df : TM → TR ∼= R, so

that df (v) = vμ∂f/∂xμ = v (f), the directional derivative of f . Let us
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apply this to the coordinate function x1 : M → R. Then we have dx1 (v) =

vμ∂x1/∂xμ = v1, so that in particular dxν (∂/∂xμ) = δνμ, i.e. dxμ is in

fact the dual frame to ∂/∂xμ. Thus in a given coordinate system, we can

write a general tensor of type (m,n) as

T = T μ1...μm
ν1...νn

∂

∂xμ1
⊗ · · · ⊗ ∂

∂xμm
⊗ dxν1 ⊗ · · · ⊗ dxνn .

In particular, the metric tensor is often written ds2 ≡ g = gμνdx
μdxν ,

where the Einstein summation convention is used and the tensor symbol

omitted. A general k-form ϕ ∈ ΛkM can then be written as

ϕ =
∑

μ1<···<μk

ϕμ1...μk
dxμ1 ∧ · · · ∧ dxμk .

From either the tangent mapping definition or the behavior of the exterior

product under a change of basis from Section 3.1.3, we see that under a

change of coordinates we have

dyμ1 ∧ · · · ∧ dyμk = det

(
∂yν

∂xμ

)
dxμ1 ∧ · · · ∧ dxμk .

This is the familiar Jacobian determinant (like the Jacobian matrix, also

often called the Jacobian) that appears in the change of coordinates rule

for integrals from calculus, and explains the name of the volume form as

defined previously in terms of the exterior product.

In summary, the differential d has a single definition, but is used in

several different settings that are not related in an immediately obvious

way.

Table 6.2.1 Various uses of the differential on manifolds.

Construct Argument Other names Other symbols

dΦ: TM → TN Φ: M → N Tangent mapping TΦ, Φ∗, Φ

df : TM → R f : M → R Directional derivative v (f), dvf , ∇vf

dxμ : TM → R xμ : M → R Dual frame to ∂/∂xμ βμ

6.2.3 Immersions and embeddings

We can generalize and make precise the concept of a surface embedded in 3-

dimensional space with the following definitions concerning a differentiable

map Φ: Mm → Nn:
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• Immersion: dΦ is injective for all p ∈M ; intuitively, a smooth mapping

that doesn’t collapse the tangent spaces

• Submanifold: an immersion with Φ injective; intuitively, an immersion

that doesn’t intersect itself

• Embedding (AKA imbedding): a submanifold with Φ a homeomor-

phism onto Φ (M); intuitively, a submanifold that doesn’t have intersect-

ing limit points
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Figure 6.2.2 R immersed in R

2; the second immersion approaches a self-
intersection in the limit as the line approaches infinity.

The difference in dimension (n−m) is called the codimension of the

embedding. The Whitney embedding theorem states that anyMm can

be immersed in R(2m−1) and embedded in R2m. Thus we can view differ-

entiable manifolds as generalized surfaces that we study without making

reference to the enclosing Euclidean space. The limiting dimension of this

theorem is illustrated by noting that the real projective space RPm cannot

be embedded in R(2m−1).

6.2.4 Critical points

General mappings Φ between manifolds classify points according to how

they transform, and can be used to extract information about the manifolds:

• Regular point: p ∈M such that dΦp maps TpM onto TpN ; if the map

is not onto, p is called a critical point

• Regular value: q ∈ N such that Φ−1 (q) consists of all regular points or

is empty; if Φ−1 (q) includes a critical point, q is called a critical value
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Figure 6.2.3 Critical points of the height function Φ mapping a hollow bullet
to its vertical component. The flat top and tip only have horizontal tangents, so
that dΦ is not onto. At a regular point, the tangent to a curve C ∈M is mapped
to the tangent of the mapped curve Φ (C) via the Jacobian.

Sard’s theorem states that if Φ is sufficiently differentiable, almost all

values are regular (we will not elaborate on “sufficient” and “almost” here).

Morse theory uses these concepts to extract cell complex structures and

homological information from a given manifold.

6.3 Derivatives on manifolds

In this section we will introduce various objects that in some way measure

how vectors or forms change from point to point on a manifold.

6.3.1 Derivations

In general, we define a derivation to be a linear map D : a → a on an

algebra a that follows the Leibniz rule (AKA product rule)

D(AB) = (DA)B +A(DB).

As noted previously in Section 6.1.2, the set vect(M) of vector fields on a

manifold form a Lie algebra; the Lie bracket operation with a fixed vector

field [u, ] is then a derivation on this algebra, since the Leibniz rule

[u, [v, w]] = [[u, v] , w] + [v, [u,w]]
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is just the Jacobi identity.

For a graded algebra, e.g. the exterior algebra, the degree of a deriva-

tion is the integer c where D : ΛkM → Λk+cM . A graded derivation is

defined to follow the graded Leibniz rule, e.g. for a k-form ϕ,

D (ϕ ∧ ψ) = Dϕ ∧ ψ + (−1)kc ϕ ∧ Dψ.
If c is odd, a graded derivation is sometimes called an anti-derivation

(AKA skew-derivation).

6.3.2 The Lie derivative of a vector field

Without some kind of additional structure, there is no way to “transport”

vectors, or compare them at different points on a manifold, and therefore

no way to construct a vector derivative. The simplest way to introduce this

structure is via another vector field, which leads us to the Lie derivative

Lvw ≡ [v, w]; as noted above, Lv is a derivation due to the Jacobi identity.

In this section we define the Lie derivative in terms of infinitesimal vector

transport, and explore its geometrical meaning.

Given any vector field v onMn, it can be shown (Frankel [1997] pp. 125-

127) that there exists a parameterized curve vp(t) at every point p ∈ M

such that vp(0) = p and v̇p(t) is the value of the vector field v at the point

vp(t) (the dot indicates the derivative with respect to t, which as usual is

calculated on the curve mapped to Rn by the coordinate chart). Each curve

in this family is in general only well-defined locally, i.e. for −ε < t < ε, and

is thus called the local flow of v.

��������� �������

������
��� �����������

Figure 6.3.1 A depiction of the local flow of a vector field v, with details on the
local parameterized curve vp(t) at a point p.

For a fixed value of t, there is some region U ⊂ M where the map

Φt : U → U defined by p �→ vp (t) is a diffeomorphism, and within the valid

domain of t the maps Φt satisfy the abelian group law Φt ◦Φs = Φt+s; thus

the Φt are called a local one-parameter group of diffeomorphisms.
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This name is somewhat misleading, since due to the limited domain of t

the maps Φt do not actually form a group; the “local” reflects the fact that

the diffeomorphisms are not on all of M . In the case that these maps are

in fact valid for all of t and M , v is called a complete vector field, and

the Φt are called a one-parameter group of diffeomorphisms. If M is

compact, then every vector field is complete; if not, then a vector field is

complete if it has compact support (is zero except on a compact subset

of M).

The tangent map dΦ defined by the vector field v is then the extra

structure we need to “transport” vectors. dΦ maps a vector tangent to the

curve C to a vector tangent to the curve Φ (C); it “pushes vectors along

the flow of v.” We can now define the Lie derivative as a limit

Lvw ≡ lim
ε→0

1

ε

[
dΦ−ε

(
w
∣∣
vp(ε)

)− w |p ]
= lim

ε→0

1

ε

[
w
∣∣
vp(ε) − dΦε (w |p )

]
.
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Figure 6.3.2 The Lie derivative Lvw is “the difference between w and its trans-
port by the local flow of v.”

☼ In this and future depictions of vector derivatives, the situation is

simplified by focusing on the change in the vector field w while showing

the “transport” of w as a parallel displacement. This has the advantage

of highlighting the equivalency of defining the derivative at either 0

or ε in the limit ε → 0. Depicting Lvw as a non-parallel vector at

vp (t) would be more accurate, but would obscure this fact. We also

will follow the picture here in using words to characterize derivatives:

namely, “the difference” is short for “the difference per unit ε to order

ε in the limit ε→ 0.”
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This definition can be shown to be equivalent to Lvw ≡ [v, w]. Another

way of depicting the Lie derivative that highlights the anti-commutativity

of the Lie bracket is to consider Lvw in terms of a loop defined by the flows

of v and w.

p = vp(0)
   = wp(0)

vp(�)

�2Lvw = �2[v, w]

�w|v (�)pd��(�w|p)

�v|p

wp(�)

�w|p

�v|w (�)p

Figure 6.3.3 The Lie derivative Lvw can also be pictured as the vector field
whose local flow is the “commutator of the flows of v and w,” i.e. it is the
difference between the local flow of v followed by w and that of w followed by v.
Thus Lvw “completes the parallelogram” formed by the flow lines.

6.3.3 The Lie derivative of an exterior form

The Lie derivative Lv can be applied to a k-form ϕ by using the pullback

of ϕ by the diffeomorphism Φ associated with the flow of v, i.e. applied to

k vectors wI we define

Lvϕ (wI) ≡ lim
ε→0

1

ε
[ϕ (dΦε (wI))− ϕ (wI)] .

The Lie derivative is thus a derivation of degree 0 on the exterior algebra.

Lvϕ measures the change in ϕ as its arguments are transported by the local

flow of v. In the case of a 0-form f , this is just the differential or directional

derivative Lvf = v(f) = df(v).
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Figure 6.3.4 The Lie derivative illustrated for a 1-form ϕ with ε = 1. Lvϕ(w)
is “the difference between ϕ applied to w and ϕ applied to w transported by the
local flow of v,” so above we have Lvϕ(w) = 2− 1 = 1 (valid in the limit ε → 0
if ϕ changes linearly in the range shown).

☼ Here and in future figures, we represent a 1-form ϕ as a “receptacle”

ϕ⇑ ≡ ϕ�/
∥∥ϕ�

∥∥2 which when applied to a vector “arrow” argument v

yields the number of receptacles covered by the projection of v onto ϕ�,

which is the value of ϕ(v). This can be seen by recalling from Section

3.2.1 that ϕ(v)/
∥∥ϕ�

∥∥ is the length of the projection of v onto ϕ�, so

that this projection divided by the length of the receptacle
∥∥ϕ⇑∥∥ =

1/
∥∥ϕ�

∥∥ recovers the value ϕ(v). The advantage of this approach is

that values can be calculated from the figure absent a length scale.

Another common graphical device is to represent 1-forms as “surfaces”

which are “pierced” by the arrows.

� The common practice of depicting a 1-form ϕ in terms of the asso-

ciated vector ϕ⇑ as above has consequences that can be non-intuitive.

For example, doubling the value of the 1-form means halving its length

in the illustration, i.e. the value of the 1-form can be viewed as the

“density” of receptacles. Also, when depicting ϕ as changing linearly,

the length L of the 1-form representation changes like L �→ L/(1 + ε),

which doesn’t appear linear as a vector representation would, whose

length changes like L �→ L(1 + ε).

By using the above definitions of the Lie derivative applied to vectors

and 1-forms, we can extend it to tensors by using these definitions for each

component. In a holonomic frame, we can obtain an expression for the Lie
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derivative of a tensor in terms of coordinates

LwT
μ1...μm

ν1...νn = wλ ∂

∂xλ
T μ1...μm

ν1...νn

−
m∑
j=1

(
∂

∂xλ
wμj

)
T μ1...μj−1λμj+1...μm

ν1...νn

+

n∑
j=1

(
∂

∂xνj
wλ

)
T μ1...μm

ν1...νj−1λνj+1...νn .

6.3.4 The exterior derivative of a 1-form

The Lie derivative Lvϕ is defined in terms of a vector field v, and its value

as a “change in ϕ” is computed by using v to transport the arguments of

ϕ. In contrast, recall that the differential d takes a 0-form f : M → R to a

1-form df : TM → R with df(v) = v(f). Thus d is a derivation of degree

+1 on 0-forms, whose value as a “change in f” is computed using the vector

field argument of the resulting 1-form.

We would like to generalize d to k-forms by extending this idea of in-

cluding the “direction argument” by increasing the degree of the form. It

turns out that if we also require the property d (d (ϕ)) = 0 (or “d2 = 0”),

there is a unique graded derivation of degree +1 that extends d to general

k-forms; this derivation is called the exterior derivative. We first explore

the exterior derivative of a 1-form.

The exterior derivative of a 1-form is defined by

dϕ (v, w) ≡ v (ϕ (w))− w (ϕ (v))− ϕ ([v, w]) ,

where e.g.

v (ϕ (w)) = lim
ε→0

1

ε

[
ϕ
(
w
∣∣
vp(ε)

)− ϕ (w |p )
]

measures the change of ϕ (w) in the direction v, so that

dϕ (v, w) = lim
ε→0

1

ε2
[(
ϕ
(
εw

∣∣
vp(ε)

)− ϕ (εw |p )
)

− (
ϕ
(
εv

∣∣
wp(ε)

)− ϕ (εv |p )
)

−ϕ (
ε2 [v, w]

)]
.

The term involving the Lie bracket “completes the parallelogram” formed

by v and w, so that dϕ (v, w) can be viewed as the “sum of ϕ on the

boundary of the surface defined by its arguments.”
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Figure 6.3.5 The exterior derivative of a 1-form dϕ (v, w) is the sum of ϕ along
the boundary of the completed parallelogram defined by v and w. So if in the
diagram ε = 1, we have dϕ (v, w) = (2− 1)− (0− 0) + 2 = 3. This value is valid
in the limit ε→ 0 if the sum varies like ε2 as depicted in the figure.

The identity d2 = 0 can then be seen as stating the intuitive fact that

the boundary of a boundary is zero. If ϕ = df , then ϕ (v) = df (v) = v (f),

the change in f along v. Thus e.g. εϕ (v |p ) = f (vp (ε))− f (p), so that the

value of ϕ on v is the difference between the values of f on the two points

which are the boundary of v. Each endpoint will be cancelled by a starting

point as we add up values of ϕ along a sequence of vectors, resulting in the

difference between the values of f at the boundary of the total path defined

by these vectors. dϕ is the value of ϕ over the boundary path of the surface

defined by its arguments, which has no boundary points and so vanishes.
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Figure 6.3.6 d2 = 0 corresponds to the boundary of a boundary is zero: each
term ϕ(v) = df(v) is the difference between the values of f on the boundary
points of v, which cancel as we traverse the boundary of the surface defined by
the arguments of dϕ(v, w). In the figure we assume a vanishing Lie bracket for
simplicity.

Note that dϕ (v, w) measures the interaction between ϕ and the vector

fields v and w, thus avoiding the need to “transport” vectors. In particular,

a non-zero exterior derivative can be pictured as resulting from either the

vector fields or ϕ “changing,” i.e. changing with regard to the implied

coordinates of our pictures.
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Figure 6.3.7 A non-zero exterior derivative dϕ (v, w) results from changes in
ϕ (v) or ϕ (w), not changes in either ϕ or the vector fields alone as compared to
some transport.

If we calculate dϕ (e1, e2) explicitly in a holonomic frame in two dimen-

sions, d
(
ϕ1dx

1 + ϕ2dx
2
)
= dϕ1 ∧ dx1 + dϕ2 ∧ dx2, so applying this to the

basis vector fields e1 and e2 we have

dϕ (e1, e2) = dϕ1 (e1) · dx1 (e2)− dϕ1 (e2) · dx1 (e1)
+ dϕ2 (e1) · dx2 (e2)− dϕ2 (e2) · dx2 (e1)

= e1 (ϕ2)− e2 (ϕ1)

= ∂/∂x1 (ϕ2)− ∂/∂x2 (ϕ1) .
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Note that a holonomic dual frame βμ = dxμ satisfies dβμ = ddxμ = 0.

6.3.5 The exterior derivative of a k-form

The extension of the coordinate-free definition of d to general k-forms gives

the expression

dϕ (v0, . . . , vk)

≡
k∑

j=0

(−1)j vj (ϕ (v0, . . . , vj−1, vj+1, . . . , vk))

+
∑
i<j

(−1)i+j ϕ ([vi, vj ] , v0, . . . , vi−1, vi+1, . . . , vj−1, vj+1, . . . , vk) .

Our picture for 1-forms then extends to higher dimensions using much

the same reasoning as used for homology in Section 5.2. For example, as-

suming vanishing Lie brackets to simplify the picture, the exterior derivative

of a 2-form dϕ (u, v, w) can be viewed as the “sum of ϕ on the boundary

faces of the cube defined by its arguments.” If ϕ = dψ (v, w) is the bound-

ary of a face, dϕ = d2ψ is the sum of the boundaries of the faces; each edge

is then counted by two faces with opposite signs, thus canceling so that

again we have d2 = 0.

Figure 6.3.8 The 3-form dϕ = d2ψ sums ψ over the edges of the faces of a cube.
The sum vanishes since each edge is counted twice with opposite signs.

The similarity between the exterior derivative d and the boundary ho-

momorphism ∂ from homology is no illusion, as we will see shortly in Section

6.4.

In a holonomic frame, we can obtain an expression for dϕ in terms of

coordinates
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dϕ =
∑

μ0<···<μk

⎛⎝ k∑
j=0

(−1)j ∂

∂xμj
ϕμ0...μj−1μj+1...μk

⎞⎠ dxμ0 ∧ · · · ∧ dxμk ,

or even more explicitly,

dϕ =
∑

μ0<···<μk

(
∂

∂xμ0
ϕμ1...μk

− ∂

∂xμ1
ϕμ0μ2...μk

+ · · ·

+ (−1)k ∂

∂xμk
ϕμ0...μk−1

)
dxμ0 ∧ · · · ∧ dxμk .

It is not hard to see that the exterior derivative commutes with the pullback,

i.e. Φ∗dϕ = dΦ∗ϕ.

� Despite a convenient description using coordinates associated with

a holonomic frame, it is important to keep in mind that the exterior

derivative of a form is frame- and coordinate-independent.

If we include an inner product, vector calculus can be seen to corre-

spond to exterior calculus on R3, and can thus be generalized to arbitrary

dimensions:

• For a function (0-form) f , the components of the 1-form df correspond

to those of the gradient of f , i.e. (df)μ = (∇f)μ or ∇f = (df)�; a

generalization of the gradient is then the 1-form df

• For a 1-form with components equal to those of a vector ϕμ = vμ, the

components of dϕ correspond to those of the curl of v, i.e. (dϕ)μ =

(∇× v)μ or (∇× v) = (∗d(v�))�; a generalization of the curl is then the

2-form dϕ

• For a 2-form with components equal to those of a vector ψμ = (∗ϕ)μ = vμ,

the value of dψ corresponds to the value of the divergence of v, i.e.

dψ = ∇·v or ∇·v = ∗d(∗(v�)); a generalization of the divergence is then

the value ∗d(∗ϕ)
In R3 the relations curl grad = div curl = 0 thus correspond to the property

d2 = 0. Note that we have used the musical isomorphisms on R
3, which

imply an inner product, as does the Hodge star.

Finally, the classical gradient, curl, and divergence integral theorems in

vector calculus are generalized to Stokes’ theorem: for an (n − 1)-form

ϕ on a compact oriented manifold Mn with boundary ∂M ,
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ˆ
M

dϕ =

ˆ
∂M

ϕ.

This is essentially the integral form of the property d2 = 0: summing dϕ

over M can be pictured as summing ϕ over the boundaries of infinitesimal

volumes, so that all internal boundaries cancel and what is left is ϕ over

the outer boundary ∂M .

Figure 6.3.9 The integral of dϕ over M can be pictured as summing ϕ over the
boundaries of infinitesimal volumes, so that all internal boundaries cancel and
what is left is ϕ over the outer boundary ∂M .

We will not address the details of defining integration on manifolds here,

but the basic idea is relatively straightforward: a coordinate chart maps

an n-dimensional sub-manifold of Mn to S ∈ Rn; an n-form ϕ can then

be written f(xI) dx
I , and its integral is defined to be

´
S f(xI) dx

I , which

can be shown to be coordinate-independent. Note that without additional

structure on the manifold, we cannot integrate functions or other forms

over Mn besides n-forms.

6.3.6 Relationships between derivations

We can define one other derivation on k-forms, the interior derivative

(AKA inner derivative, inner multiplication), which is the generalization of

the interior product to forms on manifolds; i.e. for a given vector v it is

the graded degree −1 derivation (ivϕ) (w2, . . . , wk) ≡ ϕ (v, w2, . . . , wk) on

k-forms ϕ, which follows the graded Leibniz rule iv (ϕ ∧ ψ) = (ivϕ) ∧ ψ +

(−1)k ϕ∧ (ivψ). The graded commutativity of forms immediately gives the

property iviw + iwiv = i2v = 0.

The interior, exterior, and Lie derivatives then form an infinite-

dimensional graded Lie algebra with the following relations:
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• [Lv, Lw] ≡ LvLw − LwLv = L[v,w]

• [iv, iw] ≡ iviw + iwiv = 0

• [d, d] ≡ d2 + d2 = 0

• [Lv, iw] ≡ Lviw − iwLv = i[v,w]

• [Lv, d] ≡ Lvd− dLv = 0

• [iv, d] ≡ ivd + div = Lv

6.4 Homology on manifolds

The additional structure of coordinates and tangents can be used to revisit

homology, gaining additional insight and results. In particular, as we saw in

Section 6.3.5, the exterior derivative d exhibits structure reminiscent of the

boundary homomorphism ∂ in homology. This can be exploited to build a

version of homology based on forms instead of on simplices.

6.4.1 The Poincaré lemma

We first define the form versions of cycles and boundaries in homology:

• Closed form: an element of Ker d, i.e. a form ϕ such that dϕ = 0

• Exact form: an element of Im d, i.e. a form ϕ such that ϕ = dψ

In this context, the term Poincaré lemma can refer to either the property

“exact ⇒ closed” (d2 = 0), or the converse statement “closed ⇒ exact”

under certain topological conditions, which we address next.

Let us try to picture a closed 1-form that is not exact using a coordinate

frame. If the 1-form ϕ is closed, it integrates to zero around any coordinate

square; but if it is not exact, it does not define a function f via ϕ = df .

This means there must be a square around which adding up the values of

ϕ does not vanish. Therefore there must be a square that cannot be built

from coordinate squares, i.e. there must be a “hole” in M .
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�

Figure 6.4.1 A closed 1-form must vanish when integrated around any coordi-
nate square, as for example in the square sketched here. For this same 1-form not
to be exact, there must be a square around which the integral does not vanish,
i.e. a square that is not a coordinate square. Above, the central square is not a
coordinate square, since for the depicted 1-form to be smooth, the singular point
at the center must be missing from the manifold.

This picture is confirmed and made precise by the Poincaré lemma,

which states that ifM is contractible, all closed forms are exact. Recall that

a contractible space is homotopy equivalent to a point, so that allHn vanish.

Thus the Poincaré lemma says “on a manifold with no holes, closed and

exact forms are the same thing.” In particular, any point on a manifold is

contained in a coordinate chart, which is a contractible neighborhood; thus

given a closed form dϕ = 0 and a point p, there is always a neighborhood

of p in which we can define ψ such that ϕ = dψ.

6.4.2 de Rham cohomology

In the case that there are indeed “holes” present, we can still relate them

to closed and exact forms. The de Rham cohomology groups are

simple to construct; similar to the singular homology groups Hn(X) ≡
Ker∂n/Im∂n+1, they are the quotient groups Ker dn/Im dn−1, or the closed

n-forms modulo the exact n-forms. Thus a de Rham cohomology class is a

coset of closed forms that differ by an exact form.
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Consider the integral of a closed k-form ϕ over a k-cycle c in M , i.e.´
c
ϕ where dϕ = 0 and ∂c = 0. Stokes’ theorem says that this number is

invariant if either c changes by a boundary or ϕ changes by an exact form:

ˆ
c+∂V

ϕ =

ˆ
c

ϕ+

ˆ
V

dϕ =

ˆ
c

ϕ

ˆ
c

ϕ+ dψ =

ˆ
c

ϕ+

ˆ
∂c

ψ =

ˆ
c

ϕ

This integral can thus be viewed as a mapping from a de Rham co-

homology coset represented by the closed k-form ϕ to the real functions

on a homology coset represented by the k-cycle c. But this last is just

the singular cohomology groups Hk(M ;R), so that we have a mapping´
c ϕ : Hk

de Rham → Hk (M ;R). The de Rham theorem states that this

mapping is an isomorphism, so that the de Rham and singular cohomology

groups with real coefficients are identical for manifolds.

This allows us to deduce information about forms from topological prop-

erties. For example, if a manifoldM has Betti number bk = 0, then Hk = 0

and so every closed k-form on M is exact.

For manifolds, our intuitive picture of n-cycles as “closed surfaces within

a space” is quite literal. Every closed oriented submanifold Ck of Mn

defines a k-cycle, and a converse is provided by Thom’s theorem: every

k-cycle with real coefficients in Mn is homologous to a real k-chain ΣriV
k
i

of closed oriented submanifolds V k
i ⊂Mn.

6.4.3 Poincaré duality

For a closed orientable topological manifold Mn, Poincaré duality refers

to a symmetry that relates the kth homology group to the (n− k)th group.

This symmetry has several consequences:

• There are canonical isomorphisms Hk
∼= Hn−k for all k

• Hk
∼= Hn−k modulo their torsion subgroups, i.e. modulo the Z summands

with torsion coefficients ⇔ in terms of Betti numbers, bk = bn−k

• The torsion subgroups of Hk and Hn−k−1 are isomorphic

• For a closed non-orientable M,Hk (M ;Z2) ∼= Hn−k (M ;Z2)

For orientable non-compact manifolds, a more complicated duality map can

also be constructed.
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Geometrically, Poincaré duality expresses the existence of dual cell

structures on a manifold. For example, in two dimensions the dual is ob-

tained from any cell structure by placing a vertex at the center of every

face, with an edge bisecting every original edge. Triangulating the sphere in

this way with a regular cell structure yields a polyhedron, and one obtains

the dual polyhedron by placing a vertex at the center of each face.

�

Figure 6.4.2 Dual cell structure in two dimensions for a plane; a cube can be
used to triangulate a sphere, as can the dual tetrahedron.

The Platonic solids, i.e. the five convex polyhedra with identical convex

regular polygonal faces, are all dual to one another, as the cube is dual to the

tetrahedron above. This dual cell structure concept can be generalized to

arbitrary dimension, and this can be seen to lead directly to the symmetry

between homology on the original cell structure and cohomology on the

dual cell structure.

Alexander duality relates homology and cohomology groups for a

sphere with a piece deleted: for U a compact locally contractible subspace

of Sn, Hk (S
n − U ;Z) ∼= Hn−k−1 (U ;Z).
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Chapter 7

Lie groups

7.1 Combining algebra and geometry

Abstract algebra defines operations on elements, while spaces are defined

by relationships between points. Lie groups (pronounced “lee”) are an

example of a hybrid object, a manifold whose points are also elements in

a group. In this chapter we will be primarily concerned with Lie groups,

but there are many other useful hybrid algebraic/geometric objects, some

of which we briefly mention in this section.

7.1.1 Spaces with multiplication of points

Table 7.1.1 Hybrid algebraic/geometric objects.

Geometric structure Algebraic structure

H-space Topological space Continuous multiplication, identity

Topological group Hausdorff space Continuous group operations

Lie group Differentiable manifold Differentiable group operations

An H-space (AKA Hopf space) is not a group; it may lack inverses or

even associativity. An H-space is sometimes defined with a �→ 1a and

a �→ a1 only homotopic to the identity, sometimes through basepoint pre-

serving maps. These alternate definitions are equivalent for H-spaces that

are cell complexes. The unit vectors in a normed real division algebra have

a continuous multiplication and identity, and form the spaces S1, S3, and

S7; thus these are H-spaces, and in fact are the only spheres that can be

made into H-spaces. S1 and S3 are also Lie groups, but S7 is not even a

topological group since it is non-associative.

111
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Since we view manifolds and groups as our most basic geometric and

algebraic objects, the structures short of a Lie group have limited interest

for us: any group that “looks like a manifold” is automatically a Lie group.

More precisely, any group can be made into a topological group, and any

topological group that is locally Euclidean can be identified with a single Lie

group. The second is because for any topological manifold with continuous

group operation, there exists exactly one differentiable structure that turns

it into a Lie group.

In any topological groupG the identity component Ge, the connected

component containing the identity, is a normal subgroup. Thus we can view

the connected components as equal-sized copies of Ge; in a Lie group, these

copies are in fact diffeomorphic. A connected Lie group is sometimes called

an analytic group. Cartan’s theorem states that any closed subgroup of

a Lie group is also a Lie group.

7.1.2 Vector spaces with topology

In the same way that we defined a topological group to be a space with

points that act like group elements, we can define a topological vector

space to be a Hausdorff space with points that act like vectors over some

field, with the vector space operations continuous. However, a better defini-

tion might be a vector space with a topology that makes it Hausdorff. This

is because the vector space structure already contains topological informa-

tion in its scalars, which interact as Euclidean spaces. This is reflected

in the fact that a finite-dimensional vector space can only be made into a

topological vector space with the Euclidean topology; however, this is not

true for infinite-dimensional vector spaces.

Taking another approach, we can use norm and inner product struc-

tures on a real vector space to turn it into a hybrid object. Recall that a

metric space is a topological space with a distance function. A complete

metric space is one in which the limit of every Cauchy sequence (a se-

quence of points that become arbitrarily close) is also in the space. In a

normed vector space, the norm defines a distance function ‖v − w‖, which
turns the space into a hybrid object, a metric/vector space. A complete

normed vector space is called a Banach space, and an inner product space

that is complete with respect to the norm defined by the inner product is

called a Hilbert space. All finite-dimensional inner product spaces are

automatically Hilbert spaces, but applications in physics typically involve

infinite-dimensional spaces, where more care is required.
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Introducing the multiplication of vectors, a Banach algebra is a Ba-

nach space that is an associative algebra satisfying ‖vw‖ ≤ ‖v‖ ‖w‖. The

concept of a conjugate is generalized in a *-algebra, a complex associa-

tive algebra with an anti-linear mapping * that is both an involution,

i.e. applied twice to any element it is the identity v∗∗ = v, and an anti-

automorphism, i.e. it is an automorphism except under multiplication

where we require that (vw)∗ = w∗v∗. A *-algebra that is also a Banach

algebra is called a B*-algebra. Finally, if the property ‖vv∗‖ = ‖v‖2 also

holds for all vectors, it is called a C*-algebra.

The main use of all this in physics is in quantum theories. Hilbert spaces

are restrictive enough to act the most like finite-dimensional vector spaces,

and the algebra of continuous linear operators on a complex Hilbert space

is a C*-algebra. This line of reasoning leads us into analysis, a part of

mathematics we will not address in this book; however, here we list some

relevant facts for a Hilbert space H , with details omitted:

• Every Hilbert space admits an orthonormal basis (where every element

of H is a possibly infinite linear combination of basis vectors)

• Most Hilbert spaces in physics are separable, meaning they have a

countable dense subset

• All separable Hilbert spaces of countably infinite dimension are isomor-

phic; thus the references in physics to “Hilbert space”

• Any closed subspace of a Hilbert space has an orthogonal complement

• The dual space H∗ (the space of all continuous linear functions from H

into the scalars) is isomorphic to H

• Every element of H∗ can be written 〈v, 〉 for some v ∈ H (sometimes

called the Riesz representation theorem)

• This justifies the bra-ket notation (AKA Dirac notation), in which

we write |ψ〉 ∈ H , 〈ψ| ∈ H∗, so that in terms of a basis |ϕ〉 we have

|ψ〉 = ∑ |ϕi〉 〈ϕi |ψ 〉

7.2 Lie groups and Lie algebras

Recall that the vector fields on a manifold vect(M) form an infinite-

dimensional Lie algebra. The group structure of a Lie group G permits

the definition of special vector fields that form a Lie subalgebra of vect(G)

with many useful properties. In particular, this special Lie algebra de-

scribes the infinitesimal behavior of G, i.e. the behavior near the identity.

In physics, Lie groups are used to describe many transformations, with
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their infinitesimal generators thus described by Lie algebras.

7.2.1 The Lie algebra of a Lie group

Here we define the special vector fields that give Lie groups an associated

Lie algebra. The left translationmapping Lg(h) ≡ gh is a diffeomorphism

on G, as is right translation Rg(h) ≡ hg. A left-invariant vector field

A then satisfies

dLg (A) |h = A|Lg(h)

for any g and h. In words, the vector field at any point can be obtained

by the left translation of its value at any other point. Thus the vector

field is invariant under a left translation diffeomorphism. In particular, a

left-invariant vector field is then completely determined by its value at the

identity.

The left-invariant vector fields on G under the Lie commutator form its

associated Lie algebra g (which is also isomorphic to the right-invariant

vector fields). Since each left-invariant vector field is uniquely determined

by its value at the identity element (point) e, g is isomorphic to the tangent

space TeG, which of course has the same dimension as G. The elements of

the Lie algebra g ∼= TeG are often called the infinitesimal generators of

G.
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Figure 7.2.1 The Lie group G of rotations of a circle has an associated Lie
algebra g ∼= R.

We can also define left-invariant forms by demanding invariance un-

der left translated vector arguments, i.e. we require L∗
gϕ = ϕ where L∗

g

is the pullback. As with left-invariant vectors, left-invariant forms are

uniquely determined by their value at the identity. The term Maurer-

Cartan form can be used to refer to left-invariant 1-forms in general, a
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particular basis of left-invariant 1-forms, or a g-valued 1-form that is the

identity on left-invariant vector fields.

If we choose a basis of left-invariant 1-forms αμ (the dual to a basis of

g), we can construct a left-invariant volume form α1 ∧ · · · ∧αn called a left

Haar measure. A volume form constructed from a basis of right-invariant

1-forms is called a right Haar measure, and if it is bi-invariant, i.e. both

left- and right-invariant, it is simply called a Haar measure. Haar measures

allow one to construct integrals on G that are invariant under left and/or

right translation diffeomorphisms.

7.2.2 The Lie groups of a Lie algebra

Recall that on a differentiable manifold, it is not possible to use a tan-

gent vector v to “transport a point in the direction v” in a coordinate-

independent way, since there is no special curve on M among the many

that have v as a tangent. On a Lie group this is possible, since the left-

invariant vector fields provide a unique flow in the direction of v.

A one-parameter subgroup of G is a homomorphism φ : R → G.

Given a left-invariant vector field A, there is a unique one-parameter sub-

group φA such that φA (0) = e and φ̇A (t) = A for all t (i.e. φA (t) is the

local flow from Section 6.3.2, but being defined for all t it is called simply

the flow of A). We can then define the exponential map exp: g→ G by

exp(A) ≡ eA ≡ φA (1) .

Since scaling the parametrization scales the tangent vectors, we have

φA (t) = φtA (1) = exp(tA).

�
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Figure 7.2.2 The exponential map takes A ∈ g to the point a unit distance
along its flow.

In particular, the elements of G infinitesimally close to the identity can

be written e + εA. The exponential map is a generalization of familiar
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exponential functions: if G = R+, the positive reals under multiplication,

g = R and exp is the normal exponential function for real numbers; if G

is the non-zero complex numbers under multiplication, g = C and exp is

the normal complex exponential function; and if G = GL(n,R), the real

invertible n×n matrices under matrix multiplication, g = gl(n,R), the real

n× n matrices, and exp is matrix exponentiation, defined by

eA ≡
∞∑
k=0

1

k!
Ak.

The multiplication of matrix exponentials does not follow the scalar rule,

instead being given by the Baker-Campbell-Hausdorff formula:

eAeB ≡ eA+B+ 1
2 [A,B]+···

The terms that continue the series are all expressed in terms of Lie commu-

tators. The terms shown above comprise the entire series if both matrices

commute with the commutator, i.e. if [A, [A,B]] = [B, [A,B]] = 0. This

formula is valid for any associative algebra.

7.2.3 Relationships between Lie groups and Lie algebras

The exponential map is a diffeomorphism in some neighborhood of the

identity, but in general over G it is neither injective nor surjective. This

reflects the fact that in general there are an infinite number of different

Lie groups with the same Lie algebra. However, some facts regarding the

relationship between a finite-dimensional Lie algebra and its corresponding

Lie groups are:

• The exponential map is surjective for any compact connected Lie group

• Any connected Lie group is generated by a neighborhood of the identity,

i.e. every element is a finite product of exponentials

The relationship between Lie groups and Lie algebras also extends to de-

rived objects:

• There is a one-to-one correspondence between the connected Lie sub-

groups of G and the Lie subalgebras of g

• A connected Lie subgroup of a connected G is normal iff its Lie algebra

is an ideal in g

• The Lie algebra of G×H is g⊕ h



October 20, 2017 17:37 Mathematics for Physics 9in x 6in b3077 page 117

7.2. Lie groups and Lie algebras 117

• Every Lie group homomorphism φ : G → H determines a Lie algebra

homomorphism dφ : g→ h; the converse holds if G is simply connected

Lie algebras can be seen to restrict the topology of Lie groups as compared

to general manifolds. For example, a basis of TeG corresponds to linearly

independent left-invariant vector fields on all ofG; therefore every Lie group

is orientable and parallelizable. The only connected one-dimensional Lie

groups are R and S1 (under addition of value and angle). Both are abelian,

and in fact any connected abelian Lie group is a direct product of these

one-dimensional Lie groups. In particular, the only compact 2-dimensional

Lie group is the torus T 2 = S1 × S1.

7.2.4 The universal cover of a Lie group

The relationship between Lie groups and Lie algebras is particularly

straightforward for simply connected Lie groups:

• Every Lie algebra corresponds to a unique simply connected Lie group

G∗

• There is a group homomorphism φ from this unique simply connected Lie

group G∗ to any other connected Lie group G with the same Lie algebra,

with Kerφ ∼= π1 (G) discrete

This last implies that for any Lie group G ∼= G∗/π1 (G), the simply con-

nected Lie group G∗ with the same Lie algebra has a fixed number of points

that map down to any point in G. G∗ can thus be pictured as “wrapping

around” any such G some number of times, and is therefore called the

universal covering group.
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Figure 7.2.3 A depiction of the universal covering group G∗ and its homomor-
phism to any other Lie group G with the same Lie algebra. A one-dimensional
subalgebra and corresponding one-dimensional subgroups are shown as lines.

The idea of a space covering another generalizes to any topological space:

a covering space C of a space X has a continuous surjective map to X

whose inverse in a neighborhood of any point of X is a union of mutually

disjoint open sets homeomorphic to that neighborhood. The points that

map to a point p ∈ X are called the fiber over p, and the disjoint open sets

over a neighborhood of p are called sheets. Under reasonable connectivity

requirements, every space then has a unique simply connected universal

covering space that covers all connected covers.
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Figure 7.2.4 The infinite-sheeted universal covering space R of S1.
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7.3 Matrix groups

The most common Lie groups are thematrix groups (AKA linear groups),

which are Lie subgroups of the group of real or complex n × n invertible

matrices, denoted GL(n,R) and GL(n,C). We can also consider the linear

groups, which are Lie subgroups of GL(V ), the group of invertible linear

transformations on a real or complex vector space V . One can then choose

a basis of V to get a (non-canonical) isomorphism to the matrix group, e.g.

from GL(Rn) to GL(n,R).

� The distinction between the abstract linear groups and the basis-

dependent matrix groups is not always made, and the notation is used

interchangeably. Alternative notation includes GLn(R), and the field

and/or dimension is often omitted, yielding notation such as GLn,

GL(n), GL(R), or GL.

These groups can be seen to be Lie groups by taking global coordinates

to be the real matrix entries or the real components of the complex entries.

Thus GL(n,R) is a manifold of dimension n2, and GL(n,C) has manifold

dimension 2n2. Any subgroup of GL that is also a submanifold is then

automatically a Lie subgroup.

We can also consider Lie groups defined by invertible matrices with

entries in H or O, since even though they cannot be viewed as linear trans-

formations on a vector space, they still form a group and are manifolds

with respect to the real components of their entries.

� Some matrix groups can also be viewed as a complex Lie group,

a group that is also a complex manifold. For example, GL(n,C) can

be viewed as an n2-dimensional complex Lie group instead of as a real

Lie group of dimension 2n2. It is important to distinguish between

a complex Lie group and a real Lie group defined by matrices with

complex entries.

7.3.1 Lie algebras of matrix groups

The Lie algebra associated with a matrix group is denoted by the same

abbreviation as the Lie group, but with lowercase letters; e.g. the Lie
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algebra of GL(n,R) is denoted gl(n,R). gl(n,R) is easily seen to be the set

of all real n×n matrices under the Lie commutator, and in general the Lie

algebra associated with a matrix group can be expressed as matrices with

entries in the same division algebra as the matrix group.

� It is important to remember that the multiplication operation on the

matrices of a Lie algebra is that of the Lie commutator using matrix

multiplication.

If an element of GL(n,R) is considered to be a linear transformation on

Rn, an element of gl(n,R) is an infinitesimal generator of a linear trans-

formation. Thus an element A of gl(n,R) can be viewed as a vector field

on R
n that “points in the direction of a linear transformation,” i.e. as a

matrix it linearly transforms a vector v into the tangent to the path in R
n

traced by the one-parameter subgroup φA (t) applied to v.

� This view of the element A as a vector field on Rn should not be

confused with the view of gl as a vector field on GL; incorporating this

latter view would make gl a “vector field of vector fields.”
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Figure 7.3.1 An element of GL(n,R) is a linear transformation on R
n, while

an element A of the associated Lie algebra gl(n,R) is a vector field on R
n that

“points in the direction” of the element eA ∈ GL (n,R).

7.3.2 Linear algebra

Here we recall some basics of linear algebra, which is assumed to be familiar

to the reader. We start by collecting some terminology:
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• AT: transpose of A, reflecting entries across the diagonal

• AT = −A: anti-symmetric (AKA skew-symmetric) matrix

• A†: adjoint (AKA hermitian conjugate) of a matrix, the transposed

complex conjugate (also denoted A∗)
• A† = A: hermitian matrix, a matrix that is self-adjoint

• A† = −A: anti-hermitian (AKA skew-hermitian) matrix ⇒ iA is her-

mitian

• A†A = I: unitary (orthogonal) matrix for complex (real) entries

• A†A = AA†: normal matrix, e.g. a hermitian or unitary matrix

• Eigenvalues: scalars a such that Av = av for vectors v, the eigenvec-

tors

• tr(A): the trace of the matrix A, the sum of the diagonal entries

• det(A): determinant of A

• Singular means det(A) = 0, unimodular can mean either |det(A)| = 1

or det(A) = 1

• Similarity transformation: A→ BAB−1 by a nonsingular matrix B

Some basic facts are:

• A similarity transformation A → BAB−1 is equivalent to a change of

the basis defining the vector components operated on by A, where the

change of basis has matrix B−1 so that v → Bv

• The eigenvalues, determinant and trace of A are independent of basis ⇒
unchanged by a similarity transformation

• The trace is a cyclic linear map: tr(ABC) = tr(BCA) = tr(CAB)

• The determinant is a multiplicative map: det(rAB) = rndet(A)det(B)

• The trace equals the sum of eigenvalues; the determinant equals their

product

• det (exp(A)) = exp (tr(A)); (exp(A))
†
= −exp(AT)

• det(I + εA) = 1 + εtrA+ . . .

• A hermitian matrix has real eigenvalues and orthogonal eigenvectors

• Spectral theorem: any normal matrix can be diagonalized by a unitary

similarity transformation

As previously noted, we can geometrically interpret an element of a matrix

group with real entries as a transformation on R
n. Such a transformation

preserves the orientation of Rn if its determinant is positive, and preserves

volumes if the determinant has absolute value one.

Any bilinear form ϕ on R
n can be represented by a matrix in the stan-

dard basis, with the form operation then being ϕ(v, w) = vTϕw. The
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group of matrices that preserve a form ϕ consists of matrices A that

satisfy ϕ (Av,Aw) = ϕ (v, w)⇔ (Av)
T
ϕ(Aw) = vTϕw ⇔ ATϕA = ϕ. Any

similarity transformation simply changes the basis of each A, leaving the

group of matrices that preserve the form unchanged. Thus we can concern

ourselves only with a canonical form of the preserved form. In R
n, we have

several naturally defined forms:

• The Euclidean inner product, with canonical form I

• The pseudo-Euclidean inner product of signature (r, s), with canonical

form (r + s = n)

η =

(
Ir 0

0 −Is

)
• The symplectic form, with canonical form

J =

(
0 In/2

−In/2 0

)
Any matrix group defined as preserving one of these canonical forms then

preserves all forms in the corresponding similarity class. Some matrix

groups with entries in C or H can also be viewed as preserving a form

in the vector space C
n or module Hn, but we will mainly view these as

linear transformations on R2n or R4n.

7.3.3 Matrix groups with real entries

Here we summarize some of the common matrix groups with real entries,

with a focus on their geometrical properties as linear transformations on

Rn.
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Table 7.3.1 Matrix groups with real entries.

Name Geometry Matrix Lie algebra

GL (n,R)

General linear group

Arbitrary change of

basis in Rn

n× n matrices

with det (A) �= 0

All n× n

matrices

GL (n,R)e Preserves orientation det (A) > 0 gl (n,R)

SL (n,R)

Special linear group

Preserves orientation

and volume

det (A) = 1 tr (A) = 0

O (n)

Orthogonal group

Preserves the Euclidean

inner product: rotations

and reflections

ATA = I

⇒ det (A) = ±1

AT = −A

SO (n)

Special orthogonal

group

Proper rotations

(preserves orientation)

ATA = I,

det (A) = 1

o (n,R)

O (r, s)

Pseudo-orthogonal

group

Preserves the

pseudo-Euclidean inner

product

ATηA = η

⇒ det (A) = ±1

Matrices ηA

for A

anti-symmetric

SO (r, s)

Special

pseudo-orthogonal

group

As above, but preserves

orientation

ATηA = η,

det (A) = 1

o (r, s)

Sp (2n,R)

Real symplectic group

Preserves the symplectic

form

ATJA = J

⇒ det (A) = 1

JA+ATJ = 0

Notes: Just as GL(n,R) is often written GLn, similar notation is sometimes

used for other groups. The notation does not distinguish between abstract

and matrix groups; we will attempt to note the distinction when relevant.

GL (n,R)e is often written GL+
n or similar. An immediate result from their

definitions is O (r, s) ∼= O (s, r) and SO (r, s) ∼= SO (s, r). The notation

Sp (2n,R) reflects the fact that J only exists for even-dimensional matrices;

however, sometimes it is denoted Sp (n,R), where the group still consists of

2n × 2n matrices. We will always use notation consistent with the size of

the defining matrices.

7.3.4 Other matrix groups

Here we summarize some other common matrix groups. We again stress

that although they are defined in terms of matrices with non-real elements,
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these are all real Lie groups.

Table 7.3.2 Other matrix groups.

Name Matrix Lie algebra

GL (n,C) n× n complex matrices with

det (A) �= 0

All complex n× n matrices

SL (n,C) det (A) = 1 tr (A) = 0

U (n)

Unitary group

A†A = AA† = I

⇒ |det (A)| = 1

A† = −A

SU (n)

Special unitary group

A†A = AA† = I,

det (A) = 1

A† = −A,
tr (A) = 0

Sp (2n,C)

Complex symplectic

group

ATJA = J JA+ATJ = 0

Sp (n)

Quaternionic

symplectic group

n× n quaternionic matrices

with A†A = AA† = I where †

uses the quaternionic

conjugate

A† = −A

Notes: U(n) is the complex version of O(n), and can be viewed as preserving

the standard inner product 〈v, w〉 ≡ v†w on Cn; however it does not form

a complex Lie group. The complex versions of the pseudo-orthogonal and

special pseudo-orthogonal groups can be similarly defined.

The quaternionic symplectic group Sp(n) is also called the quaternionic

unitary group, which better matches the definition above. An equivalent

definition is Sp (n) ≡ U (2n)∩ Sp (2n,C), and thus Sp(n) is also called the

unitary symplectic group. Unlike in the real and complex cases, it is also

compact, and so yet another term used is the compact symplectic group.

One can also view the relationships between the three symplectic groups in

terms of their Lie algebras; this will be seen in Table 7.5.1 in Section 7.5.2.

Additional matrix groups can be defined by generalizing more of the

above constructions to mixed signatures and quaternionic entries, but they

are not as frequently used in physics and we will not cover them here.

7.3.5 Manifold properties of matrix groups

As real manifolds, we can list various properties of the matrix groups.
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Table 7.3.3 Manifold properties of matrix groups for n > 1 and rs �= 0.

Group Dimension Compact Connectedness

GL (n,R) n2 No 2 components

SL (n,R) n2 − 1 No Connected

O (n) n (n− 1) /2 Yes 2 components

SO (n) n (n− 1) /2 Yes Connected

O (r, s) n (n− 1) /2 No 4 components

SO (r, s) n (n− 1) /2 No 2 components

Sp (2n,R) (2n) (2n+ 1) /2 No Connected

GL (n,C) 2n2 No Connected

SL (n,C) 2
(
n2 − 1

)
No Simply connected

U (n) n2 Yes Connected

SU (n) n2 − 1 Yes Simply connected

Sp (2n,C) (2n) (2n+ 1) No Simply connected

Sp (n) n (2n+ 1) Yes Simply connected

Notes: In particular, since U(n) is compact and connected, any unitary

matrix U can be written as U = eiH for some hermitian matrix H.

Since the exponential map is surjective for any compact connected Lie

group, it is surjective for SO(n), U(n) and SU(n). As it turns out, it is

also surjective for SO(3, 1)e and GL(n,C).

We can also characterize the topology of matrix groups by noting some

diffeomorphisms of their manifolds:

• O(n + 1)/O(n) ∼= SO(n+ 1)/SO(n) ∼= Sn

• U(n+ 1)/U(n) ∼= SU(n+ 1)/SU(n) ∼= S2n+1

• In particular, we then have U(1) ∼= SO(2) ∼= S1, SU(2) ∼= S3

• O(n) ∼= S0 × SO(n); U(n) ∼= S1 × SU(n)

• Thus SO (n+ 1) /O(n) ∼= RPn; SU (n+ 1) /U(n) ∼= CPn

• In particular, we then have SO(3) ∼= RP3

• SO(4) ∼= S3 × SO(3); SO(8) ∼= S7 × SO(7)
• Sp(2,R) ∼= SL(2,R); Sp(2,C) ∼= SL(2,C); Sp(1) ∼= SU(2) ∼= S3

With regard to homotopy groups, some facts are:

• π1(G) is abelian for any Lie group G (in fact for any H-space)

• π2(G) = 0 for any Lie group G

• π1 (SO (n)) = Z2 for n > 2; π3 (SU (n)) = Z for n > 1



October 20, 2017 17:37 Mathematics for Physics 9in x 6in b3077 page 126

126 Lie groups

7.3.6 Matrix group terminology in physics

An important fact used in physics is that SU(2) is the universal covering

group of SO(3). For example, the four complex numbers associated with

an element of SU(2) are called Cayley-Klein parameters, and via this

homomorphism can be used to specify a proper rotation in R3, i.e. an

element of SO(3). SU(2) is a double cover, so there are two Cayley-Klein

parameters corresponding to every proper rotation.

The connected components of matrix groups are usually related to de-

terminant signs; we can see this by studying O (3, 1), which in physics is

called the (homogeneous) Lorentz group. It is of dimension 6, and con-

sists of rotations and reflections in Minkowski space (AKA spacetime),

R
4 with the Minkowski metric, where the positive signatures correspond to

space and the negative signature to time. O (3, 1) has 4 connected com-

ponents, corresponding to whether the orientation of time and/or space is

reversed. The proper Lorentz group SO (3, 1) consists of the identity

component and the connected component of transformations that reverse

both space and time, while the orthochronous Lorentz group consists

of the two components that preserve the orientation of time. The identity

component SO (3, 1)e is then called the proper orthochronous Lorentz

group (AKA restricted Lorentz group). A “rotation” by an angle φ in a

“time-like plane” which includes vectors with negative lengths is called a

Lorentz boost of rapidity φ.

The Poincaré group (AKA inhomogeneous Lorentz group) IO(3, 1)

is the semidirect product of the translations in 4 possible directions with

O (3, 1); the product is semidirect since the translations are a normal sub-

group and every element can be written in exactly one way as a translation

followed by a rotation. It has dimension 10, or n (n+ 1) /2 in general. The

above adjectives can also be applied to the Poincaré group. All of the above

analysis was for the “mostly pluses” signature (3, 1), but the results also

hold for the “mostly minuses” signature (1, 3).

Similarly, the Euclidean group E(n) ≡ R
n
� O(n) is the semidirect

product of translations in R
n with O (n), while the special Euclidean

group SE(n) takes the semidirect product with SO (n). These are sub-

groups of the affine group Aff (n,R) ≡ R
n � GL(n,R) and its identity

component the special affine group, respectively. All of these “inhomo-

geneous” groups, i.e. groups formed by semidirect products whose elements

are a translation v followed by a linear transformation A, can be viewed as
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matrix groups of the form (
A v

0 1

)
,

where v is a column vector and the matrices can be considered as acting

on vectors in homogeneous coordinates (AKA projective coordinates),

in which a component 1 is appended:(
A v

0 1

)(
w

1

)
=

(
Aw + v

1

)

� Note that in homogeneous coordinates scalar multiples of vectors are

identified, e.g. (1, 2, 3, 1) = (2, 4, 6, 2). A possible source of confusion is

that inhomogeneous groups act on vectors in homogeneous coordinates.

7.4 Representations

The group of three-dimensional rotations SO(3) can “act” on various ob-

jects, for example the space R
3 or the unit sphere S2. These example

actions are “symmetries” of the objects, in that the rotated objects are

isomorphic to the original, with each element of SO(3) thus “represented”

by an automorphism of the object. These ideas are formalized by actions

and representations, which are homomorphisms from each element of an al-

gebraic object to a morphism from a space to itself. Group representations

in particular are heavily used in physics.

Note that a matrix group (or algebra) has a defining representation

(AKA standard representation) on the space of its entries, e.g. R
n or Cn,

but in a given situation one may be working with a different representation.

The defining representation of a Lie group is also often called the funda-

mental representation, but this term has a different meaning when used

in the classification of Lie algebras.

� It is important to keep in mind which vector space is meant in a

given situation; e.g. in the context of a representation of SO(n) acting

on an object in R
m, there is the space Rn used to define the group,

the possibly different Euclidean space Rm the representation is acting

on, and the space Rn(n−1)/2 that the charts of the manifold of the Lie

group map to.
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7.4.1 Group actions

A group action (AKA left action, realization, representation) of any group

G on any set X is a homomorphism ρ : G → Aut (X), where Aut (X) is

the group of automorphisms of X (the symmetry group). Since in most

applications a group action is fixed, we will write the action of g ∈ G on

x ∈ X as simply g(x), or gρ (x) if the homomorphism needs to be made

explicit; other common notations are gx, ρg(x) and ρ(g)(x). When acted

on by G, X is sometimes called a G-set (or a G-space if it is a space).

� As we will see, some specific types of actions (e.g. reps) may be

required to preserve additional structures that exist onX (e.g. a vector

space structure), but in general, the automorphism group is that of X

as a set or space, with any additional structure (e.g. that of a fiber

bundle) disregarded.

Since a left action is a homomorphism, g ◦ h and gh are required to be

the same automorphism, i.e.

g (h (x)) = (gh) (x) ∀x ∈ X.
A right action operates from the right within the group, and so instead

requires that

g (h (x)) = (hg) (x) ,

and is often written xg. Note that a left action can be turned into a right

action (and vice versa) via the inverse; e.g. if G has a left action and we

define a new action gR(x) ≡ g−1(x), then

gR (hR (x)) = g−1
(
h−1(x)

)
= (g−1h−1)(x)

= (hg)−1(x)

= (hg)R (x) .

Some definitions related to a group action are:

• Orbit of x ∈ X : orbit(x) ≡ {g(x) | g ∈ G}; i.e. all points of X that can

be reached from x by the action of some g

• Isotropy group (AKA little group, stabilizer subgroup) of x: the sub-

group I (x) ≡ {g | g (x) = x}; i.e. all elements of G that leave x fixed

• Transitive action: ∀x, y ∃g | y = g (x) ⇔ X is a single orbit; i.e. any

two points are related by the action of some g
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• Faithful (AKA effective) action: ∀g �= h ∃x | g(x) �= h(x) ⇔ ρ is

injective; i.e. every g is mapped to a distinct automorphism

• Free (AKA semiregular, fixed point free) action: ∀g �= h, g(x) �=
h(x)∀x⇔ only e has a fixed point; i.e. the orbit of every x is an injective

map of G

• Regular (AKA simply transitive, sharply transitive) action: ∀x, y ∃
unique g | y = g(x) ⇔ transitive and free; i.e. any two points are

related by the action of one g

One can state various relationships between these properties, for example:

free implies faithful; free is equivalent to all isotropy groups being trivial;

and G acts transitively on any orbit of X . If the action of G is transitive,

then X is called a homogeneous space for G; if the action is also free (i.e.

regular), then X is called a principal homogeneous space or G-torsor.

A G-torsor is isomorphic to G as a set or space, but there is no uniquely

defined identity element; it can thus be thought of as a group “with the

identity forgotten.” The action of G on itself by left or right multiplication

is regular.
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Figure 7.4.1 The action of the three dimensional rotations SO(3) on R
3 is

not transitive, since two points at different radii cannot be reached from each
other by the action of a rotation; is faithful, since every rotation is a distinct
automorphism; but is not free, since every rotation leaves an axial line fixed. The
orbit of x is the sphere of the same radius, and the isotropy group of x is the two
dimensional rotations around the axis it determines.

If a groupG has a left action on two setsX and Y , a mapping f : X → Y

is called equivariant if

f (g (x)) = g (f (x))

for all g and x. In other words, an equivariant map is a homomorphism with

respect to the group action; it is therefore also sometimes called a G-map

or G-homomorphism. This definition has to be modified if we extend it

to right actions, where we take advantage of the property (gh)−1 = h−1g−1

to maintain ordering:
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Table 7.4.1 The equivariance condition for a map f : X → Y between two G-
sets, using two common notations.

Left action on Y Right action on Y

Left action on X
f (g (x)) = g (f (x))

f(gx) = gf(x)

f (g (x)) = g−1 (f (x))

f(gx) = f(x)g−1

Right action on X
f (g (x)) = g−1 (f (x))

f(xg) = g−1f(x)

f (g (x)) = g (f (x))

f(xg) = f(x)g

If G has a left action on X , and we denote the left cosets of the isotropy

group as G/I(x), then the map f : G/I(x)→ orbit(x) defined by gI(x) �→
gx is equivariant. The orbit-stabilizer theorem states that this map is

also bijective. Such a map is sometimes called a G-map isomorphism. For

finite G, the corollary |G| / |I(x)| = |G : I(x)| = |orbit(x)| is also sometimes

referred to as the orbit-stabilizer theorem, where |orbit(x)| denotes the

number of elements in the set.

A Lie group has the additional structure of a differentiable manifold,

which is required to carry over the action homomorphism to the corre-

sponding automorphisms. Thus a Lie group action is defined to be a

smooth homomorphism from a Lie group G to Diff(M), the Lie group of

diffeomorphisms of a manifold M .

7.4.2 Group and algebra representations

A group representation (AKA rep, linear representation) is a linear

group action on a real or complex vector space V , i.e. a homomorphism

ρ : G→ GL(V ) from G to the Lie group of linear invertible automorphisms

of the manifold V = R
n or Cn. We can choose a basis of V to get a

isomorphism from GL(V ) to GL(n,R) or GL(n,C), in which case the rep-

resentation is called a matrix representation. For a matrix rep, the

transpose switches left and right actions like the inverse, as does an action

by the matrix on row vectors instead of column vectors; in particular, a left

matrix rep on vector components v′μ = gμλv
λ is equivalent to a left action

e′μ = (g−1)λμeλ =
[
e1 · · · en

] [
g−1

]
on the basis, since the inverse of the matrix acts on a row vector. The

G-space V is called a representation space, and an equivariant map

between representation spaces of the same group is called an intertwiner

(AKA intertwining map); note that by the definition of equivariant, an

intertwiner is itself a linear map.



October 20, 2017 17:37 Mathematics for Physics 9in x 6in b3077 page 131

7.4. Representations 131

� It is common to use “representation” to refer to the representation

space V , with the group G and the mapping ρ inferred from context.
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Figure 7.4.2 Actions and representations of groups and Lie groups. The map-
pings are homomorphisms for groups, smooth homomorphisms for Lie groups.

Now, a group representation ρ : G → GL(V ), being a homomorphism,

satisfies ρ (gh) = ρ (g) ρ (h). Similarly, an algebra representation of an

associative algebra a is defined to be a linear homomorphism ρ : a→ gl (V ),

e.g. for scalar a and vectors A,B,C in a, we require that ρ (aA+BC) =

aρ (A) + ρ (B) ρ (C). An algebra representation is also referred to as a G-

module, or just a module, since if we ignore scalars in both V and a, V

acted on by a can be viewed as a module with vectors in the abelian group

V and scalars in the ring a.

We can now use the Lie commutator to define the related Lie alge-

bra representation of a Lie algebra g as a smooth linear homomorphism

ρ : g → gl (V ), i.e. we require ρ ([A,B]) = ρ (A) ρ (B) − ρ (B) ρ (A). Note

that a Lie algebra derived from a real Lie group is by definition a real vector

space, since it lies in the tangent space of a real manifold; thus the scalar

field in such a Lie algebra, even if defined by complex matrices, is the field

of reals.

7.4.3 Lie group and Lie algebra representations

A Lie group action ρ is a smooth homomorphism from G to Diff(M). An

element of G near the identity then moves each point of M to a nearby

point. So for any vector A ∈ g, the one-parameter subgroup φA from the

identity along A maps to a curve in M at each point. The differential

of this mapping takes A to a vector field on M , and this relation is in

fact a Lie algebra homomorphism dρ : g→ vect(M), the corresponding Lie
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algebra action. Recalling the construction of the Lie derivative, we see that

the Lie algebra action of A ∈ g, called the fundamental vector field

corresponding to A, is the vector field on M whose local flow is the Lie

group action of the one-parameter subgroup φA. If G acts on itself by right

translation, the fundamental vector fields are just the left-invariant vector

fields.

Ge

g

one-parameter
subgroup �A

A∈�
M x

g(x)

Lie group action
y

g(y)

A(x)
    = d�(A)(x)

���:G�Diff(M)
d�:��vect(M)

�(�A)(x)

A(y)

Figure 7.4.3 The corresponding Lie algebra action obtained from a Lie group
action.

In the case of a Lie group representation on a real or complex vector

space V , the corresponding Lie algebra representation maps g to a linear

subalgebra of vect(V ) that is isomorphic to gl(V ). The Lie bracket in

this case is the Lie commutator, whether viewed as that of vector fields,

of transformations, or of matrices. Similarly one can show that if a Lie

algebra g has a matrix representation, and a compact connected Lie group

G corresponds to g, then G has a matrix representation given by the matrix

exponential of the Lie algebra representation.

Every finite-dimensional real Lie algebra has a faithful finite-

dimensional real representation, i.e. can be viewed as a class of real ma-

trices. This result is a special case of two theorems dealing with scalars

in more general fields, Ado’s theorem and Iwasawa’s theorem. The

analog is not true in general for finite-dimensional Lie groups, although

most Lie groups used in physics can be viewed as matrix groups. A stan-

dard counter-example given is the universal covering group of SL(2,R),

which is infinite-sheeted and therefore has no faithful finite-dimensional

representation.

7.4.4 Combining and decomposing representations

If G and H are groups or Lie groups with representations on vector spaces

V and W , we can define the direct sum of the representations as the repre-

sentation of G×H on V ⊕W defined by (g, h) (v, w) ≡ (g (v) , h (w)). The
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Lie algebra of G ×H is g⊕ h, and it then has a representation on V ⊕W
similarly given by (A,B) (v, w) ≡ (A (v) , B (w)).

Since every linear transformation leaves the origin invariant, no linear

representation is transitive. However, one can ask that at least no vec-

tor subspace be invariant. An irreducible linear representation (AKA

irrep,) on V is defined as a group or algebra representation that has no

non-trivial invariant subspace (AKA subrepresentation, or submodule if

an algebra rep) 0 ⊂ W ⊂ V such that gW ⊂ W ∀g ∈ G. A representation

is completely reducible (AKA decomposable) if the orthogonal comple-

ment of every invariant subspace is also invariant; any finite-dimensional

completely reducible representation can then be written as a direct sum of

irreps. Referring back to Figure 7.4.1, the action of SO(2) on R
3 is com-

pletely reducible, and can be written as the direct sum of the identity irrep

on the axis of rotation R
1 and the rotation irrep on the plane R2 orthogonal

to it.

Note that a representation can be reducible but not completely re-

ducible, i.e. can have an invariant subspace and yet not be a direct sum of

irreps. However, most representations of interest are either irreducible or

completely reducible:

• Every representation of a finite group is completely reducible

• Every representation of a compact Lie group is completely reducible

• Every unitary representation is completely reducible

• Weyl’s theorem: every representation of a Lie algebra is completely

reducible iff the Lie algebra is semisimple (semisimple will be defined in

Section 7.5.1)

• Every representation of a connected semisimple Lie group is completely

reducible

Again considering groups or Lie groups G and H with representations on

V and W , we can define the tensor product of the representations as the

representation of G × H on V ⊗ W defined by (g, h)(v ⊗ w) ≡ g(v) ⊗
h(w). In this case the representation of the Lie algebra g ⊕ h is given by

(A,B) (v ⊗ w) = A (v)⊗I+I⊗B (w), in order to make it linear on V ⊗W .

The tensor product of two representations of the same group G can be

viewed as a new representation of G on the vector space V ⊗W given by

g (v ⊗ w) ≡ g (v)⊗ g (w). Even if the two original representations are irre-

ducible, this new tensor product representation may not be; decomposing

it into a direct sum of irreps is called Clebsch-Gordan theory.

By noting that the kernel and image of an intertwiner are invariant sub-
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spaces, one arrives at Schur’s Lemma, which states that any intertwiner

between irreps is either zero or an isomorphism. This has several imme-

diate consequences, which are sometimes referred to themselves as Schur’s

Lemma:

• Any self-intertwiner of a finite-dimensional complex irrep is a multiple of

the identity map

• Any two intertwiners between finite-dimensional complex irreps differ by

only a complex constant multiple

• Any matrix in the center of the image of a complex irrep is a multiple of

the identity matrix

• A complex irrep maps any element in the center of a Lie group to a

multiple of the identity transformation

• Any irrep of an abelian Lie group is one-dimensional (as a manifold)

For a real Lie algebra g, we can consider its complexification gC as a com-

plex Lie algebra. We can then ask, if gC has an irrep on Cn (i.e. as an

algebra with complex matrices in C(n) as vectors and scalars in C), does

this correspond to an irrep of g on C
n (i.e. as an algebra of complex ma-

trices in C(n) as vectors and scalars in R)? The answer is yes; the irreps

on C
n of g are one to one with those of gC as a complex Lie algebra.

7.4.5 Other representations

For a Lie group G, the inner automorphism φg : G → G induced by a

fixed g ∈ G is defined by h �→ ghg−1, and can be viewed as an action

of G on itself. At the identity e we then have the map (dφg) |e : g→ g .

The adjoint representation Ad: G→ GL (g) represents G on g, and for

A ∈ g is defined by gAd (A) ≡ (dφg) |e (A) ; it is often denoted AdgA. Using

the exponential map, one can show that exp (tgAd (A)) = gexp (tA) g−1.

If G is a matrix group, so that g and A are both matrices, the adjoint

representation is simply the similarity transformation gAd(A) = gAg−1.

The adjoint representation also sometimes refers to the representation of

the Lie algebra g on itself defined by the differential of Ad at the identity:

ad ≡ (dAd) |e : g→ gl (g) . It can easily be shown that for a given A ∈ g,

Aad is just the Lie derivative Aad (B) = LA (B) = [A,B].

The trivial representation maps all of G to the identity on a one-

dimensional vector space; this representation is irreducible, and the corre-

sponding Lie algebra representation maps all of g to 0.

Closely related to linear representations are projective representa-
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tions and affine representations, homomorphisms from G to Aut(X)

where X is a projective or affine space. Recall that a projective space is

obtained from a vector space by taking all lines through the origin, i.e.

by identifying scalar multiples of vectors. We can then view a projective

representation as mapping each group element to an automorphism of a

vector space V “ignoring vector length.” An affine space is defined as

a set on which a vector space acts freely and transitively as an additive

group. Thus any two points in an affine space can be identified with the

vector whose action relates them; i.e. an affine space “ignores the origin,”

so that vectors are defined between any two points, even if one is not the

origin. In particular, a group representation that maps each group element

to an automorphism on V that is an affine map (AKA inhomogeneous

transformation), the sum of a linear and constant map, is an affine repre-

sentation.
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Figure 7.4.4 A linear rep maps each group element to a linear transformation
of a vector; a projective rep maps each element to a linear transformation of a
line; and an affine rep maps each element to a linear transformation of a vector
plus an offset from the origin.

7.5 Classification of Lie groups

The classification of Lie groups and Lie algebras is a topic that is helpful,

but not required, in understanding most of theoretical physics. Neverthe-

less, many of the concepts and terminology from this area are frequently

seen in the physics literature, and so are covered here.

We have already learned two important facts with regard to the clas-

sification of Lie groups; namely, that every Lie group has connected com-

ponents diffeomorphic to the normal subgroup of the identity component,

and every connected Lie group G has a simply connected universal covering

group G∗. G is then obtained from G∗ by taking the quotient G∗/N , where

N is a discrete normal subgroup that is isomorphic to π1 (G). This discrete

subgroup lies in the center of G∗. We then have a picture of how general
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Lie groups are related to simply connected Lie groups, which are one-to-one

with Lie algebras.
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Figure 7.5.1 The identity componentGe is the quotient of the universal covering
group G∗ by a discrete normal subgroup N . A general Lie group G has Ge as a
normal Lie subgroup.

G/Ge is called the component group of G, and is not in general a

subgroup of G, so we cannot express G as a semidirect product of Ge and

G/Ge. Similarly, since Ge is not in general a subgroup of G∗, we cannot ex-
press G∗ as a semidirect product ofN and Ge. Fortunately, most Lie groups

in physics have at most a small number of connected components, so a clas-

sification of connected Lie groups will have a large impact. Unfortunately,

classifying connected Lie groups is a vast and complicated field of study.

Fortunately, in physics we can profitably narrow our focus to compact con-

nected Lie groups, and still obtain important results. Unfortunately, even

with this reduced scope, the subject is quite complicated.

7.5.1 Compact Lie groups

Compact Lie groups have many properties that make them an easier class

to work with in general, including:

• Every compact Lie group has a faithful representation (and so can be

viewed as a matrix group with real or complex entries)

• Every representation of a compact Lie group is similar to a unitary rep-

resentation (and so is similar to a subgroup of U(n) for some n)

• The Haar measure is bi-invariant on a compact Lie group

In terms of classification, it turns out that any compact Lie group has

a Lie algebra that can be expressed as a direct sum of certain classes of

Lie algebras. Recall that an abelian Lie algebra is one whose Lie bracket

is identically zero. As one would expect, an abelian Lie group, one with
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an abelian Lie algebra, is also abelian in the group sense. A simple Lie

algebra is a non-abelian one that has no nonzero proper ideal, and a sim-

ple Lie group is one with a simple Lie algebra. Sometimes a simple Lie

group is defined to be one that is simple in a group sense. Note that this

is a distinct definition, since in general a simple Lie group G in our sense

is not simple in the group sense: it may have discrete normal subgroups

corresponding to other Lie groups covered by G.

A Lie algebra that is a direct sum of simple Lie algebras is called a

semisimple Lie algebra, and a semisimple Lie group is one with a

semisimple Lie algebra. For any element A in a semisimple Lie algebra,

there are elements B and C with A = [B,C]; thus it is a rough “opposite”

to an abelian Lie algebra. Finally, a Lie algebra that is the direct sum of

simple Lie algebras and abelian ones is called a reductive Lie algebra,

and a reductive Lie group is one with a reductive Lie algebra (however,

other definitions of reductive Lie group are sometimes used).

For our purposes, the important fact is this: any compact connected

Lie group is a reductive group. Since every abelian connected compact

Lie group is a direct product of copies of U(1), and since every simple

compact connected Lie group is a quotient of its universal covering group

by a discrete normal subgroup, we can thus reduce the classification of

compact connected Lie groups to that of simply connected compact simple

Lie groups. This rather overwhelming scheme may possibly be clarified if

viewed pictorially.



October 20, 2017 17:37 Mathematics for Physics 9in x 6in b3077 page 138

138 Lie groups

	�������

	����������

������
	
���	��

�
���	�

�����	
���	���������
���

����

�

��

�

��

�
���	������������

�
���	��������

�������	
���	��
	
���	��������

�

���

������������������������
���	�����	����

Figure 7.5.2 Any compact connected Lie group is of the form G/N , where G
is a direct product of copies of U(1) and simply connected compact simple Lie
groups, and N is a normal discrete subgroup of G.

7.5.2 Simple Lie algebras

Our task is then to classify the simply connected compact simple Lie groups.

Fortunately, the complex simple Lie algebras have been completely clas-

sified. Unfortunately, a complex Lie algebra g has several distinct real

forms, i.e. real Lie algebras whose complexifications are g. Fortunately,

there is always a unique (up to isomorphism) compact real form of g,

which is the only one that corresponds to a compact simple Lie group.

It turns out that the universal covering group of any compact connected

semisimple group is compact, so that in particular, each complex simple

Lie algebra corresponds to a unique real simply connected compact simple

Lie group.
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Figure 7.5.3 Classifying the compact connected Lie groups can be reduced to
classifying the simply connected compact simple Lie groups, which are one-to-one
with the compact real forms of the complex simple Lie algebras.
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The complex simple Lie algebras consist of five exceptional Lie alge-

bras g2, f4, e6, e7, and e8, and four infinite series as follows.

Table 7.5.1 The infinite series of complex simple Lie algebras.

Series Complex algebra Compact real

form

Other real form

example

an (n ≥ 1) sl (n+ 1,C) su (n+ 1) su (n+ 1− s, s)

bn (n ≥ 2) so (2n+ 1,C) so (2n+ 1) so (2n+ 1− s, s)

cn (n ≥ 3) sp (2n,C) sp (n) sp (2n,R)

dn (n ≥ 4) so (2n,C) so (2n) so (2n− s, s)

Notes: The last column gives one example of a non-compact real form;

others exist as well. It is important to remember that we are complexifying

real forms as manifolds, so that e.g. the n × n quaternionic matrix sp(n)

as a real manifold complexifies to sp(2n,C), which also has the real form

sp(2n,R).

The series start at the indicated value of n to avoid duplicates in the

list due to the following isomorphisms:

• a1 ∼= b1 ∼= c1: for example su(2) ∼= so(3) ∼= sp(1)

• b2 ∼= c2: for example so(5) ∼= sp(2)

• d2 ∼= a1 ⊕ a1: for example so(4) ∼= so(3)⊕ so(3)
• d3 ∼= a3: for example so(6) ∼= su(4)

The third relation also leads to an isomorphism important in physics,

so(3, 1) ∼= sl(2,C). It is interesting to note that the series of simple Lie

algebras roughly correspond to “rotations” in R
n, Cn, and H

n; in fact, it

turns out this idea can be extended to the exceptional Lie algebras, which

can be related to transformations on O. The derivation of this classification

uses geometric objects in R
n that we will not discuss called root systems

and associated combinatorial objects called Dynkin diagrams.

Completing our task, the compact real forms determine the simply con-

nected compact simple Lie groups to be SU(n) (for n ≥ 2), Sp(n) (for

n ≥ 3), Spin(n) (for n = 5 or n ≥ 7), and the simply connected compact

exceptional Lie groups G2, F4, E6, E7, and E8. Here Spin(n) is the uni-

versal covering group of SO(n) for n > 2, to be discussed in Section 8.2.2.

Thus our final classification is:



October 20, 2017 17:37 Mathematics for Physics 9in x 6in b3077 page 140

140 Lie groups

Every compact connected Lie group is of the form G/N , where G is a

direct product of U(1) and the above simple Lie groups, and N is a

normal discrete subgroup of G.

Regarding other types of Lie groups, we can note that above we have

also classified the simple complex Lie algebras and groups. One can also

show that any connected Lie group is topologically the product of a compact

Lie group and a Euclidean space R
n. We will end our discussion here, but

we note that general Lie group theory provides various other statements

concerning classifications.

7.5.3 Classifying representations

The irreducible representations of the complex simple Lie algebras have

been fully classified, and as it turns out, these representations apply di-

rectly to their compact real forms. Using similar reasoning to above, the

irreducible representations of the compact connected Lie algebras and Lie

groups have also been fully classified.

An important example is that of the Lie algebra su(2): up to similar-

ity transformations there is one unique complex irreducible representation

of su(2) with dimension m for every m ≥ 1. These representations are

associated with angular momentum in quantum physics.

One can also classify the representations of finite groups, which are

always completely reducible. In particular, Young tableaux are combi-

natorial diagrams used to enumerate the representations of the symmetric

group Sn.
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Chapter 8

Clifford groups

In this chapter we will go into some more detail on the structure of Clif-

ford algebras, and then construct Lie groups within these algebras that are

closely related to rotations and the concept of spin.

8.1 Classification of Clifford algebras

Like the classification of Lie groups, the classification of Clifford algebras is a

topic that is helpful, but not required, in understanding most of theoretical

physics. However, Clifford algebras and related constructs such as spinors

are central to many modern physical theories, and so are worth exploring

in detail.

Recall that the Clifford algebra over a given n-dimensional real vector

space V with a pseudo inner product is defined to be the tensor algebra

modulo the identification vv ≡ 〈v, v〉. The isomorphism classes of such

Clifford algebras are then determined by the signature of the associated

inner product, which we denote C(r, s).

� Notation for Clifford algebras varies widely; in particular, r and s in

our above notation are sometimes reversed, and C(n) sometimes refers

to either C(0, n) or C(n, 0).

8.1.1 Isomorphisms

The Clifford algebra can be viewed as a Z2-graded algebra, in that it can

be decomposed into a direct sum of two vector subspaces generated by k-

vectors with k either even or odd. The even subspace, denoted C0(r, s),

141
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is also a subalgebra, since the Clifford multiplication of two even k-vectors

remains even.

By choosing ê20 = −1 ∈ C(r, s) and considering the algebra generated

by the orthonormal basis ê0êi (i �= 0), it is not hard to show that

C0(r, s) ∼= C(r, s− 1).

Then the relationship C0(r, s) ∼= C0(s, r) leads to the isomorphism

C(r, s− 1) ∼= C(s, r − 1).

One can also show that:

• C(r, s) ⊗ C(2, 0) ∼= C(r, s)⊗ R(2) ∼= C(s+ 2, r) ∼= C(r + 1, s+ 1)

• C(r, s) ⊗ C(0, 2) ∼= C(r, s)⊗H ∼= C(s, r + 2)

• C(r, s) ⊗ C(0, 4) ∼= C(r, s)⊗H(2) ∼= C (r, s+ 4)

• C (r − 4, s+ 4) ∼= C (r, s)

• The periodicity theorem (related to and sometimes referred to asBott

periodicity): C (r + 8, s) ∼= C (r, s+ 8) ∼= C (r, s)⊗ R (16)

The first isomorphism C(r+1, s+1) ∼= C(r, s)⊗R(2) means that we need

only consider classifying Clifford algebras based on the values of r− s, and
the periodicity theorem means that we can focus on values of r− s mod 8.

In physics, the most important signatures are Euclidean and Lorentzian;

specific isomorphisms for some of these Clifford algebras are listed in the

following table. Note that since the first column covers all values of r − s
mod 8, it can be used to easily determine any other Clifford algebra.

Table 8.1.1 Isomorphisms for Clifford algebras of Euclidean and Lorentzian
signatures.

n

C (n, 0) ∼= C (1, n− 1)

∼= C0 (n, 1)

∼= C0 (1, n)

C (0, n) ∼= C0 (n+ 1, 0)

∼= C0 (0, n+ 1)
C (n− 1, 1)

1 R⊕ R C C

2 R (2) H R (2)

3 C (2) H⊕ H R (2) ⊕ R (2)

4 H (2) H (2) R (4)

5 H (2)⊕ H (2) C (4) C (4)

6 H (4) R (8) H (4)

7 C (8) R (8)⊕ R (8) H (4) ⊕H (4)

8 R (16) R (16) H (8)

Notes: Clifford multiplication corresponds to matrix multiplication in the

isomorphic matrix algebra. Recall that our notation denotes e.g. the alge-

bra of 2× 2 matrices of quaternions as H(2).
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We can also form the complexified version of the Clifford algebra C(r, s),

which is equivalent to considering the Clifford algebra generated by an

inner product space C
n. Since the signature is irrelevant in this case, we

simply write CC(n) where r+ s = n. The complex Clifford algebras can be

completely described by the following isomorphisms:

• CC(2n) ∼= C(2n)

• CC(2n+ 1) ∼= C(2n)⊕ C(2n)

Note that this yields an isomorphism CC(2n) ∼= C(n, n+1) ∼= C(n+2, n−1);
in contrast, CC(2n+1) is not isomorphic to any real Clifford algebra. Also

note that C0
C(n) ∼= CC(n− 1).

� Although the above are all valid algebra isomorphisms, the original

formulation of a Clifford algebra includes an extra structure: the gen-

erating vector space R
n that is explicitly embedded in C(r, s). This

extra structure is lost in these isomorphisms, since the choice of such

an embedding is not in general unique.

8.1.2 Representations and spinors

With the matrix isomorphisms of the previous section in hand, the represen-

tation theory of Clifford algebras is quite simple, although the terminology

is less so due to historical artifacts. First we note that for K ≡ R, C, or

H, we have K(n) ∼= K ⊗ R(n), and as we will see in Section 8.1.3 on Pauli

matrices, C is isomorphic to a subalgebra of R(2) and H is isomorphic to

a subalgebra of R(4). This gives a representation of C(n) on R
2n, which is

in fact its only real faithful irreducible rep, and similarly gives H(n) a real

faithful irrep on R
4n, which is also unique. The unique real faithful irrep of

R(n) is the obvious one on Rn, so all real faithful representations of K(n)

are direct products of the above irreducible ones.

Since all Clifford algebras are isomorphic to a matrix algebra of the

form K(n) or K(n) ⊕ K(n), every Clifford algebra has either one unique

real faithful irrep, called the pinor rep, or two real faithful irreps on the

same vector space, called the positive pinor rep and the negative pinor

rep. Similarly, every complexified Clifford algebra has either one or two

complex faithful irreps, also called pinor reps, and from Section 7.4.4 we

know that these are also faithful irreps of the real Clifford algebra on the

same complex vector space. Various sub-classes of these faithful irreps have
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corresponding names that are used in physics:

• Dirac rep: for even n, the irrep of C (r, s) on C2n/2

given by the iso-

morphism CC(n) ∼= C
(
2n/2

)
• For odd n, there are two irreps of C (r, s) on C

2(n−1)/2

given by the iso-

morphism CC (n) ∼= C
(
2(n−1)/2

)⊕C
(
2(n−1)/2

)
; these are also sometimes

called Dirac reps

• Majorana rep: for r − s = 0 or 2 mod 8, the irrep of C (r, s) on R
2n/2

given by the isomorphism C (r, s) ∼= R
(
2n/2

)
• For r− s = 1 mod 8, there are two irreps of C (r, s) on R

2(n−1)/2

given by

the isomorphism C (r, s) C ∼= R
(
2(n−1)/2

) ⊕ R
(
2(n−1)/2

)
; these are also

sometimes called Majorana reps

The even subalgebra C0(r, s) ∼= C(r, s − 1) thus also has either a unique

faithful irrep, called the spinor rep, or two faithful irreps on the same

vector space, called the right-handed and left-handed chiral spinor reps

(AKA reduced spinor, semi-spinor, or half-spinor reps). The above sub-

classes of irreps then have names when they are applied to C0 (r, s):

• Weyl rep: for even n, the two irreps of C0 (r, s) on C2(n−2)/2

given by

the isomorphism CC
0 (n) ∼= CC (n− 1) ∼= C

(
2(n−2)/2

)⊕ C
(
2(n−2)/2

)
• Majorana-Weyl rep: for r − s = 0 mod 8, the two irreps of

C0 (r, s) on R2(n−2)/2

given by the isomorphism C0 (r, s) ∼= C (s, r − 1) ∼=
R
(
2(n−2)/2

)⊕ R
(
2(n−2)/2

)
Thus a pinor rep may be irreducible as a representation of the Clifford

algebra, but reducible when restricting the action to the even subalgebra,

decomposing into two chiral spinor irreps. Elements of the vector space

acted on by either pinor or spinor reps are called spinors, and are prefixed

by the rep name (e.g. Dirac spinor); chiral spinors are sometimes called

semi-spinors or half-spinors, and the vector space of spinors is called the

spinor space.

In summary, since all faithful irreps of Clifford algebras are directly

related to their isomorphisms in terms of algebras K(n), we can use these

matrix algebras to illustrate the above classification scheme.
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Figure 8.1.1 Classification of faithful Clifford algebra irreps using matrix al-
gebra isomorphisms. For r − s even (⇒ n even), CC (n) has a Dirac rep, and
C0

C(n) ∼= CC(n− 1) splits into two Weyl reps. For r − s = 0 or 2 mod 8, C (r, s)
has a real Majorana rep, and in the first case C0 (r, s) splits into two Majorana-
Weyl reps. The next four lines are obtained by using C (r, s)⊗H (2) ∼= C (r, s+ 4),
so there are no further isomorphisms to gl(R) and thus no further way to gener-
alize Majorana reps.

8.1.3 Pauli and Dirac matrices

The matrix isomorphisms of Clifford algebras are often expressed in terms

of Pauli matrices. We will follow the common convention of using {i, j, k}
to represent matrix indices that are an even permutation of {1, 2, 3}; i also
represents the square root of negative one, but the distinction should be

clear from context.

The Pauli matrices

σ1 ≡
(
0 1

1 0

)
σ2 ≡

(
0 −i
i 0

)
σ3 ≡

(
1 0

0 −1
)

are traceless, hermitian, determinant −1 matrices that satisfy the relations

σiσj = iσk and σiσjσk = i. They also all anti-commute and square to

the identity σ0 ≡ I; therefore, if we take matrix multiplication as Clifford

multiplication, they act as an orthonormal basis of the vector space that
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generates the Clifford algebra C(3, 0) ∼= C(2). In physics C(3, 0) is associ-

ated with space, and is sometimes called the Pauli algebra (AKA algebra

of physical space).

We introduce the shorthand

σ13 ≡ σ1σ3 =

(
0 −1
1 0

)
so that σ2 = iσ13. Since (σ13)

2 = −I, we can use it and σ0 as a basis for

C ∼= C(0, 1), allowing us to express complex numbers as real matrices via

the isomorphism

a+ ib↔ aσ0 + bσ13 =

(
a −b
b a

)
.

In physics C(3, 1) (or C(1, 3)) is associated with spacetime, but it turns

out one is usually more interested in the complexified algebra CC(4) ∼= C(4).

Any four matrices in C(4) that act as an orthonormal basis of C(3, 1) or

C(1, 3) to generate the Clifford algebra CC(4) are called Dirac matrices

(AKA gamma matrices), and denoted γi. A fifth related matrix is usu-

ally defined as γ5 ≡ iγ0γ1γ2γ3. Many choices of Dirac matrices are in

common use, a particular one being labeled the Dirac basis (AKA Dirac

representation, standard basis). This is traditionally realized as a basis for

C(1, 3):

γ0 =

(
I 0

0 −I
)
, γi =

(
0 σi
−σi 0

)
⇒ γ5 =

(
0 I

I 0

)
Another common class of Dirac matrices requires γ5 to be diagonal; this is

called a chiral basis (AKA Weyl basis or chiral / Weyl representation).

The meaning of γ5 and “chiral” will be explained in the next section. A

chiral basis for C(1, 3) is

γ0 =

(
0 I

I 0

)
, γi =

(
0 σi
−σi 0

)
⇒ γ5 =

(−I 0

0 I

)
,

and a chiral basis for C(3, 1) is

γ0 =

(
0 I

−I 0

)
, γi =

(
0 σi
σi 0

)
⇒ γ5 =

(−I 0

0 I

)
.

Finally, a Majorana basis generates the Majorana rep C(3, 1) ∼= R(4).

We can find such a basis by applying the previous isomorphism for complex
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numbers as real matrices to the Pauli matrices themselves, obtaining anti-

commuting matrices in R(4) that square to the identity; if we then include

an initial anti-commuting matrix that squares to −I, we get:

γ0 =

(
σ13 0

0 −σ13

)
, γ1 =

(
σ1 0

0 σ1

)
, γ2 =

(
0 −σ13
σ13 0

)
,

γ3 =

(
σ3 0

0 σ3

)
⇒ γ5 =

(
0 −σ2
−σ2 0

)
.

Note that all the above matrices representing positive signature basis vec-

tors are Hermitian, and those representing negative signature basis vectors

are anti-Hermitian; this is sometimes included as part of the defining re-

quirements for Dirac matrices. Dirac or gamma matrices can also be gen-

eralized to other dimensions and signatures; in this light the Pauli matrices

are gamma matrices for C(3, 0). If the dimension is greater than 5, γ5 can

be confused with γ5; this is made worse by the fact that one can also define

the covariant Dirac matrices γi ≡ ηijγ
j .

� The Dirac matrices and γ5 are defined in various ways by different

authors. Most differ from the above only by a factor of ±1 or ±i;

however, there is not much standardization in this area. Sometimes

the Clifford algebra definition itself is changed by a sign; in this case

the matrices represent a basis with the wrong signature, and accord-

ing to our definition are not Dirac matrices. This is sometimes done

for example when working with Majorana spinors, which only exist

in C(3, 1) spacetime, yet where an author works nevertheless in the

C(1, 3) “mostly minuses” signature.

� It is important to remember that the Dirac matrices are matrix

representations of an orthonormal basis of the underlying vector space

used to generate a Clifford algebra. So the Dirac and chiral bases are

different representations of the orthonormal basis which generates the

same matrix representation of CC(4) ∼= C(4), which acts on vectors

(spinors) in C4.

The standard basis for the quaternions H ∼= C(0, 2) can be ob-

tained in terms of Pauli matrices via the association {1, i, j, k} ↔
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{σ0,−iσ1,−iσ2,−iσ3}. Thus a quaternion can be expressed as a complex

matrix via the isomorphism

a+ ib+ jc+ kd↔
(
a− id −c− ib
c− ib a+ id

)
,

and composing this with the previous isomorphism for complex numbers

as real matrices allows the quaternions to be expressed as a subalgebra of

R(4).

The Pauli matrices also form a basis for the vector space of traceless

hermitian 2 × 2 matrices, which means that iσi is a basis for the vector

space of traceless anti-hermitian matrices so(3) ∼= su(2). Thus any element

of SU(2) can be written exp
(
iajσj

)
for real numbers aj . A similar con-

struction is the eight Gell-Mann matrices, which form a basis for the

vector space of traceless hermitian 3 × 3 matrices and so multiplied by i

form a basis for su(3).

� Since the Pauli matrices have so many potential roles, it is important

to understand what use a particular author is making of them.

8.1.4 Chiral decomposition

As we have seen, the Dirac and Majorana reps are in fact isomorphisms

from CC (r, s) and C (r, s), and so are faithful and irreducible; however,

as we have also seen they are sometimes reducible when restricting their

action to the even subalgebra, decomposing into two chiral irreps. These

chiral spinor reps of C0 (r, s) can be obtained by projection, revealing some

important attributes.

For A ∈ C0 (r, s) and even n, one can verify that the operators

P± (A) ≡ 1

2

(
A±

√
Ω2 ΩA

)
are orthogonal projections, i.e. they are idempotent, P 2

± = P±, with
P±P∓ = 0 and P++P− = 1. Since the unit n-vector Ω of C (r, s) commutes

with any A ∈ C0 (r, s), we then have the decomposition

C0 (r, s) ∼= P+ (C0 (r, s))⊕ P− (C0 (r, s)) .

Note that this decomposition is not possible if n is odd, since then ΩA /∈
C0 (r, s) and so P± (C0 (r, s)) /∈ C0 (r, s). For even n, the quantity Ω2 =
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(−1)n(n−1)/2+s must be positive in order to obtain a real square root. This

is only true if r − s = 0 or 4 mod 8, and as we saw previously, only in

the first case is the resulting algebra isomorphic to a real matrix algebra

and thus a Majorana-Weyl rep. This restriction is avoided if we apply the

decomposition to C0
C(n), which is why a Weyl rep exists for any even n.

In the present context γ5 ≡
√
Ω2 Ω is sometimes called the chirality

operator, and is the generalization of γ5 to arbitrary signature and di-

mension. This explains the name of the “chiral basis” Dirac matrices from

Section 8.1.3, since they diagonalize the chirality operator. The specific

chiral bases we listed allow us write the Dirac spinor ψ as stacked Weyl

spinors, since

P+ (ψ) =
1

2
(I + γ5)ψ =

(
0 0

0 I

)(
ψL

ψR

)
=

(
0

ψR

)
,

where P− similarly projects to the ψL half-spinor. ψR along with the as-

sociated rep and projection are called “right-handed” due to the fact that

in physics they correspond to particles “spinning” around an axis aligned

with the particle’s momentum, using the right-hand rule.

In the case of a Lorentzian signature, we can also consider time re-

versal and parity operators, which reverse the sign of either the negative

signature basis vector or the (n− 1) positive signature basis vectors. In

either case, for even n this consists of reversing an odd number of basis

vectors, so that Ω→ −Ω, and thus under either operation the chiral spinor

reps are swapped: P± (C0 (r, s))→ P∓ (C0 (r, s)).

8.2 Clifford groups and representations

Rotations on the vector space V , i.e. linear transformations that preserve

the inner product, can be expressed in terms of Clifford multiplication,

regardless of the signature. This allows us to link spacetime transformations

to spinor transformations.

8.2.1 Reflections

In the Clifford algebra, any “unit” vector, i.e. a vector u with 〈u, u〉 = ±1,
has inverse u−1 = u/ 〈u, u〉 = ±u. It turns out that for any vector v, the

quantity Ru(v) ≡ −uvu−1 is the reflection of v in the hyperplane orthogonal

to the unit vector u.

We can see this by decomposing v into a part v‖ = (〈u, v〉 / 〈u, u〉)u that

is parallel to u and the remaining part v⊥ that is orthogonal to u. Since
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parallel vectors commute, we have −uv‖u−1 = −v‖. In contrast, orthogonal

vectors anti-commute, so that we have −uv⊥u−1 = v⊥, and thus

Ru (v) = −uvu−1 = −u (v⊥ + v‖
)
u−1 = v⊥ − v‖.
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Figure 8.2.1 Any unit vector u can be used to reflect vectors across the hyper-
plane orthogonal to u.

8.2.2 Rotations

Any element of the orthogonal group O (r, s) is a rotation and/or reflection,

and a well-known result is that any such transformation can be obtained

as a product of reflections. Thus every element of O (r, s) corresponds to

the Clifford product of some k unit vectors via

Ruk···u1 (v) ≡ Ruk
(· · · (Ru1 (v)) · · · ) = (−1)k uk · · ·u1vu−1

1 · · ·u−1
k .

The elements of C (r, s) that have the form of a Clifford product of

unit vectors U = uk · · ·u1 form a Lie group denoted Pin (r, s) and called

a Clifford group (AKA Pin group). In terms of the reverse operation

of geometric algebra, the elements U ∈ Pin (r, s) are those that satisfy

UŨ = ±1. R forms a homomorphism from Pin (r, s) to O (r, s) defined by

U �→ RU , where

RU (v) = (−1)k UvU−1.

This homomorphism is two-to-one, since RU and R−U map to the same

transformation, so Pin(r, s) is a double covering of O(r, s).

Now, elements of SO (r, s) are pure rotations, i.e. they are obtained as a

product of an even number of reflections. Therefore the special Clifford
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group (AKA Spin group) Spin (r, s) ≡ Pin (r, s) ∩ C0 (r, s) is a double

covering of SO (r, s), using the restriction of RU to even elements:

RS
U (v) = UvU−1

� It is important to remember that rotations in 4 dimensions and

higher do not follow many intuitive ideas from 3 dimensions. In par-

ticular, a rotation can have more than one plane of rotation (where

rotated vectors in the plane stay in the plane), and therefore can re-

quire more than two reflections.

These relationships are depicted in the following diagram.
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Figure 8.2.2 The Clifford group Pin and its even subgroup Spin are generated
by the unit elements of the Clifford algebra C. C1 and C0 both have dimension
2n−1 as manifolds, and Pin, Spin, and Spine all have dimension n(n− 1)/2.

� Some potential sources of confusion can be avoided by remembering

that Pin (r, s) is the group generated by Clifford multiplication on the

unit elements of the algebra C (r, s). Thus the elements of Pin (r, s)

can only be multiplied with each other and always have inverses, while

the elements of C (r, s) can be multiplied by scalars and added, but

may not have multiplicative inverses.
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8.2.3 Lie group properties

Although the Lie groups Pin (r, s) and Spin (r, s) are double covers ofO(r, s)

and SO(r, s) (except for r = s = 1, see table below), they are in general

not simply connected and so are not universal covering groups. However, it

turns out that Spin (n) ≡ Spin (n, 0) ∼= Spin (0, n) is simply connected for

n > 2, and thus is the universal covering group of SO(n). In addition, for

n > 2 the identity component Spin (n, 1)e ∼= Spin (1, n)e is simply connected

and is the double cover of SO (1, n)e ∼= SO (n, 1)e. Spin (r, s) does not al-

ways have a simple description in terms of common matrix groups. Specific

isomorphisms for the identity component of the first few Spin groups in

Euclidean and Lorentzian signatures are listed in the following table.

Table 8.2.1 Isomorphisms for some Spin groups as matrices under multiplica-
tion.

n Spin (n, 0) ∼= Spin (0, n) Spin (n− 1, 1)e ∼= Spin (1, n− 1)e

2 U (1) ∼= SO (2) SO (1, 1)e ∼= R+

3 Sp (1) ∼= SU (2) Sp (2,R) ∼= SL (2,R)

4 Sp (1)⊕ Sp (1) ∼= SU (2)⊕ SU (2) Sp (2,C) ∼= SL (2,C)

5 Sp (2) Sp(1, 1)

6 SU (4) SL(2,H)

Notes: Spin(2) is isomorphic to SO(2) as an abstract group, but is never-

theless a double cover of SO(2) in terms of its action on vectors; however

it is not simply connected. Spin(1, 1)e is not a double cover of SO(1, 1)e,

which is instead obtained by imposing the restriction UŨ = 1 on Spin(1, 1)

to obtain GL (1,R) ∼= {R − 0}. Spin(2, 1)e is not simply connected, but

is a double cover of SO(2, 1)e. In all higher dimensions Spin(n, 0) and

Spin(n, 1)e are always the simply connected double covers of SO(n) and

SO(n,1)e. Sp(1, 1) is defined in a straightforward way, but SL(2,H) (not

defined here) is more tricky due to non-commutativity.

Since Spin(r, s) is a cover of SO(r, s), its Lie algebra is so(r, s), which

turns out to be the space of bivectors Λ2Rn under the Lie commutator using

Clifford multiplication: [A,B] ≡ AB − BA. A more general construct

sometimes seen is the Lie group generated by all invertible elements of

C(r, s), called the Lipschitz group (AKA Clifford group); its Lie algebra

is C(r, s) itself, also under the Lie commutator using Clifford multiplication.

We consequently have an equivalent definition of Spin (r, s)
e
as the group

generated by the exponentials of bivectors under Clifford multiplication.
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For the compact Lie groups Spin (n, 0) (n > 1), every element is then the

exponential of a bivector; as it turns out, this is also true for Spin (n, 1)
e
for

n > 3, and every element of Spin (3, 1)
e
is plus or minus such an exponential.

8.2.4 Lorentz transformations

In Euclidean space (of any dimension), we can write any element U =

exp (B) of Spin(n, 0) in terms of “unit” 2-blades B̂2
i = −1 as U =

exp
(
−θiB̂i/2

)
. Under the homomorphism R, it is not hard to show that

this element then corresponds to active rotations by θi in the planes defined

by the 2-blades B̂i.

In 2 dimensions, if B̂ = ê1ê2 = ê1 ∧ ê2, then

U = exp

(
−θ
2
ê1ê2

)
= cos

(
θ

2

)
− sin

(
θ

2

)
ê1ê2,

and RU (v) = UvU−1 can be seen to be a rotation of v by θ. Thus this

element can also be written as U = u1u2, the Clifford product of two

unit vectors separated by an angle of θ/2, which corresponds to the same

rotation RU (v) = UvŨ = u1u2vu2u1. Since B̂
2 = −1, it naturally maps to

i in the rep on U(1), thus corresponding to a spinor “rotation” of θ/2.
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Figure 8.2.3 An element U = exp(−θê1ê2/2) = u1u2 of Spin(2, 0)
corresponds to a rotation by θ which can be written RU (v) =
exp(−θê1ê2/2)v exp(+θê1ê2/2) = u1u2vu2u1, where u1 and u2 are unit vectors
separated by an angle of θ/2. Since the “rotation” in U(1) is by only θ/2,
a complete rotation in R

2 corresponds to half of one in C, i.e. for θ = 2π,
exp(−i2π/2) = −1.

� In arbitrary dimension and signature, the idea that a spinor “ro-

tation” by θ/2 corresponds to a rotation by θ is less clear; but it is

always true that a spinor sign reversal corresponds to a return to the

original state (e.g. a rotation by 2π), since U = −1 corresponds to

RU (v) = (−1)v(−1) = v.

In 3 dimensions, we can choose an orthonormal basis êi and write the

element as

U = exp

(
−

∑ θi

2
êj êk

)
,
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where the unit vector û = ûiêi is defined by θûi ≡ θi, the sum is over all

indices {i, j, k} that are even permutations of {1, 2, 3}, and U can be seen

to correspond to a rotation by θ in the plane perpendicular to û. Note that

we cannot split this into a product of exponentials, since these bivectors do

not commute.

In spacetime, an element U of Spin(3, 1)e corresponds to a restricted (i.e.

proper orthochronous) Lorentz transformation, an element of SO(3, 1)e.

Choosing an orthonormal basis êμ, a boost of rapidity φ in the direction

of the unit vector v̂ = v̂iêi corresponds to the element exp(−φiê0êi/2) of

Spin(3, 1)e, where φi ≡ φv̂i. Similarly, a rotation by θ in the space-like plane

perpendicular to û = ûiêi corresponds to the element exp(−θiΩê0êi/2),
where θi ≡ θûi. Any element of Spin(3, 1)e can then be written

U = ±exp
(
−φ

i

2
ê0êi − θi

2
Ωê0êi

)
.

Note that this decomposition into boost and rotation terms depends on

the specific basis, and that again we cannot split this into a product of

exponentials, since ê0êi and ê0êj do not commute.

If we start with a transformation U instead of a basis, we can then

choose a basis that lets us split the exponential factors. We know that U

is of the form ±exp(B), where B is a bivector in C(3, 1). It is not hard

to show that any non-null bivector B2 �= 0 can be written in the form

B = −φB̂/2− θΩB̂/2, where B̂2 = 1. Since Ω commutes with any bivector

and Ω2 = −1, it acts like the imaginary unit
√−1, and the multiplication

of exponentials follows the scalar rule. We can thus write U in the form

U = exp

(
−φ
2
B̂

)
exp

(
−θ
2
ΩB̂

)
.

Note that we have dropped the ± factor since −exp (iθ) = exp (i (π − θ)).
This decomposition means that U determines a class of orthonormal

basis vectors for R
4 in which B̂ = ê0v̂, where v̂ is a unit vector in space

ê1ê2ê3. In such a basis, the first term corresponds to a Lorentz boost of

rapidity φ in the v̂ direction, and the second term corresponds to a rotation

by θ in the space-like plane perpendicular to v̂. These orthogonal planes

are invariant under the total transformation, i.e. vectors in these planes

remain in them.

The above decomposition fails in the case B2 = 0 because this corre-

sponds to a “light-like” or “parabolic” Lorentz transformation, which leaves

a single null plane (orthogonal to itself) invariant. This case is also the rea-

son why the general form has to be prefixed by the ± factor.
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� It is important to remember that the treatment here is for active ro-

tations. Passive rotations (those that rotate the coordinate axes while

leaving the vector fixed) are in the opposite direction, so to represent

them we would multiply both angles by −1 in the above expressions.

8.2.5 Representations in spacetime

The pinor and spinor reps of C (r, s) and C0 (r, s) turn out to still be ir-

reducible when their actions are restricted to Pin (r, s) and Spin (r, s), so

the representation theory of Clifford groups is identical to that of Clifford

algebras. In this section we will list concrete representations for the var-

ious quantities we have defined in the two most common vector spaces in

physics, corresponding to space and spacetime. We will choose bases that

highlight the isomorphism C (3, 0) ∼= C0 (3, 1) and use the Pauli matrices

σi.

Dealing first with space, we can view Spin (3, 0) ∼= SU (2) ∼= Sp(1) as

either a group of quaternions sitting inside C0 (3, 0) ∼= H, or as a group of

complex matrices sitting inside C (3, 0) ∼= C(2). Both approaches can be

fruitful, but we will focus on the latter, which since CC (3) ∼= C(2) ⊕ C(2)

can be viewed as the “odd Dirac” rep for signature (3, 0).

We can represent a chosen orthonormal basis êi of R
3 by the matrices

σi, which have the correct properties of squaring to 1 and anti-commuting

under Clifford (matrix) multiplication. These basis vectors then generate

the Clifford algebra C (3, 0) ∼= C(2). The bivectors are thus naturally rep-

resented by σiσj = iσk, so that the elements of Spin (3, 0) ∼= SU (2) are of

the form

exp

(
−i θ

i

2
σi

)
,

and û = ûiêi is a unit length vector defined by θûi ≡ θi. This corresponds

to a rotation by θ in the plane orthogonal to û.

In spacetime, Spin (3, 1)
e ∼= Spin (1, 3)

e ∼= SL (2,C) is a group of com-

plex matrices sitting inside inside C0 (3, 1) ∼= C0 (1, 3) ∼= C(2), which can

be viewed as the Weyl rep, the chiral decomposition of the Dirac rep

CC (4) ∼= C(4). We choose to represent the bivectors ê0êi by the ma-

trices σi (which again have the correct properties of squaring to 1 and

anti-commuting), the remaining bivectors êiêj = ê0êiê0êj therefore be-

ing represented by the matrices σiσj = iσk. Since every element of
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Spin (3, 1)
e ∼= Spin (1, 3)

e
is of the form of plus or minus the exponential of

a bivector, every element can then be written as

UL = ±exp
(
−i θ

i

2
σi − φi

2
σi

)
,

where θûi ≡ θi, φv̂i ≡ φi, and the element corresponds to a rotation by

θ in the space-like plane perpendicular to the unit vector û = ûiêi and a

Lorentz boost of rapidity φ in the direction of the unit vector v̂ = v̂iêi.

Note that we also have the choice to represent the bivectors ê0êi by

the matrices −σi (which also square to 1 and anti-commute), which leaves

the remaining bivectors êiêj still represented by σiσj = iσk, so that the

alternative general bivector form is

UR = ±exp
(
−i θ

i

2
σi +

φi

2
σi

)
.

These representations can be seen to be inequivalent, i.e. there is no simi-

larity transformation that goes between them. Referring back to the Dirac

matrices in the chiral basis for C(3, 1)

γ0 =

(
0 I

−I 0

)
, γi =

(
0 σi
σi 0

)
⇒ γ0γiψ =

(
σi 0

0 −σi

)(
ψL

ψR

)
=

(
σiψL

−σiψR

)
,

we can see that the first representation of the bivectors ê0êi by the matrices

σi corresponds to the left-handed Weyl rep, explaining the subscripts above.

� Note that with a (1, 3) signature, the bivector reps would remain

the same, but referring back to the Dirac matrices in the chiral basis

for C(1, 3)

γ0 =

(
0 I

I 0

)
, γi =

(
0 σi
−σi 0

)
⇒ γ0γiψ =

(−σiψL

σiψR

)
,

we would swap the definitions UR and UL above. In mapping the above

to other treatments, it is important to remember that the stacking

order of the column vector depends on the choice of Dirac matrices,

but the form of the left and right Lorentz transformation reps depend

only on the signature; e.g. we can get alternative Dirac matrices by

multiplying γ0 by −1, but this does the same to γ5, thus swapping

the stacking order of the Weyl spinors in chiral decomposition and

leaving the forms of UR and UL the same. Also again note that many

treatments are for passive rotations, which would multiply all angles

by −1.
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Figure 8.2.4 An element U of the group Spin(3, 1) acts as a Lorentz transfor-
mation on spacetime via the rep SO(3, 1), and as an exponential of bivectors
expressed as multiplied pairs of Dirac matrices on spinors (in C

4 for any basis,
or in R

4 for the Majorana basis). The rep acting on C
4 is reducible to the two

Weyl irreps, where U then acts as an exponential of bivectors expressed as Pauli
matrices σi and iσi on half-spinors. The bivector reps acting on spinors can be
expressed in terms of the angles that generate Lorentz boosts and rotations on
spacetime. We drop the ± before the exponentials, choosing the positive trans-
formations which are “small” for both vectors and spinors.
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8.2.6 Spacetime and spinors in geometric algebra

In geometric algebra, the rotor group is the Lie group obtained by re-

stricting Spin (r, s) to elements whose reverse is their inverse, i.e. elements

which satisfy UŨ = 1. For n > 2 this restriction results in the identity

component, i.e the rotor group is just Spine. Thus in this context for n > 2

we can write Re
U (v) = UvŨ . This operator can also be applied to any mul-

tivector A = Σ 〈A〉k to yield the “rotated” multivector UAŨ . Under this

operation, each k-blade, consisting of the exterior product of k vectors, is

replaced with the exterior product of k rotated vectors.

The representation of the isomorphism C0 (1, 3) ∼= C (3, 0) effected by

ê0êi → σi is sometimes called a space-time split in geometric algebra,

since the resulting basis of C(3, 0) reflects (and depends upon) the partic-

ular chosen orthonormal basis êi of C0(1, 3). An event x ∈ C(1, 3) with

spacetime coordinates xμêμ is represented by ê0x = x0 + xiσi in C(3, 0);

such a linear combination of scalar and vector in C(3, 0) is then called

a paravector (although this term is sometimes used differently). This

scheme can be used to treat relativistic physics in a condensed manner.

Note that a space-time split “preserves” the scalar and pseudo-scalar basis:

I → I and Ω → Ω. If spacetime is instead represented by the “mostly

pluses” signature algebra C(3, 1), −xê0 can be used as the space-time split

in order to make the signs come out right. Note that the rep êiê0 → σi is

sometimes used instead, reversing the order of the ê0 multiplication used

to get paravectors.

There is also an interesting alternative to the standard definition of

Dirac and Weyl spacetime spinors (as vectors acted on by a faithful com-

plex representation of Spin(3, 1)e), which instead considers these spinors

as elements of the Clifford algebra associated with space. The Dirac

spinors are vectors in C
4, a complex vector space of dimension 4 that

decomposes into two orthogonal 2-dimensional complex subspaces which

are each invariant under the action of Spin(3, 1)e. Now, the even subal-

gebra C0(3, 1) ∼= C(3, 0) ∼= C(2) can also be viewed as a complex vector

space of dimension 4. The action of Spin(3, 1)e on C0(3, 1) by Clifford

multiplication is linear, and C0(3, 1) decomposes into two spaces invari-

ant under Spin(3, 1)e: the bivectors that are real linear combinations of

e0ei ∼= σi have negative determinant, while linear combinations of the re-

maining bivectors eiej ∼= σiσj = iσk have positive determinant, as do the

scalars. The pseudo-scalars are real multiples of Ω = e0e1e2e3, and so have

negative determinant. Thus an element of Spine(3, 1) ∼= SL(2,C), having
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determinant +1, leaves invariant these positive and negative determinant

subspaces under Clifford multiplication. Note that as C(3, 0), these sub-

spaces are exactly the even and odd subspaces C0(3, 0) and C1(3, 0). From

Section 8.2.5 we know that the Dirac and Weyl reps are the unique faithful

reps of Spin(3, 1)e on C4 and C2, so the above two representations must be

equivalent to these.

This alternative definition of spinors then readily generalizes to any di-

mension, i.e. spinors can be defined as elements of the 2n−1-dimensional

vector space C0(r, s) ∼= C(r, s − 1) acted on by Spin(r, s)e via Clifford

multiplication. However, it is important to note that despite the acci-

dental equivalency in signature (3, 1), for other signatures and dimensions

these definitions are quite distinct. In particular, the above decomposi-

tion of C0(3, 1) ∼= C(2) as a vector space of spinors under the action of

Spin(3, 1)e is completely unrelated to the chiral decomposition of the Dirac

rep CC(3, 1) ∼= C(4) when restricted to C0(3, 1). This is underscored by

the fact that while the Dirac rep decomposes as a rep of any part of the

even subalgebra, the decomposition of the spinor space C0(3, 1) only occurs

under the action of the identity component Spin(3, 1)e: the determinant is

not preserved under the action of Spin(3, 1) ∼= SL±(2,C), and so there is no

decomposition in this case. Lastly, note that this gives us a new character-

ization of Spin (3, 1)
e
as plus or minus the exponentials of the Lie algebra

of vectors and bivectors in C(3, 0).
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Riemannian manifolds

In this chapter we introduce two additional structures on a differentiable

manifold. First we consider the “parallel transport” of a vector, which

allows a vector at one point on the manifold to be “transported” along a

path to another point, where it can then be compared to other vectors at the

new point. This idea gives rise to a number of interdependent quantities,

and is particularly important in physics, where it is generalized to gauge

theories.

We then consider the introduction of a metric, an inner product in

each tangent space that permits us to define lengths of vectors and angles

between them. A metric determines a unique associated parallel transport,

and is the fundamental quantity in general relativity. We then touch upon

some other structures on manifolds that appear in physics.

9.1 Introducing parallel transport of vectors

9.1.1 Change of frame

In this section we will introduce a number of quantities that depend on

a choice of frame. We can then consider a change of frame, a linear

transformation of the basis eμ of each tangent space on the manifold. Since

an arbitrary manifold is not necessarily parallelizable, a frame is already a

local construct; therefore we assume a change of frame preserves orientation,

and define it to be a tensor field (γ−1)νμ of elements in GL(n,R)e smoothly

defined in the region U ⊂M where the frame is defined. We write γ−1 for

the change of frame so that the components of a vector field wμ transform

according to w′ν = γνμw
μ.

161
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� Note that the vector field w is an intrinsic object that is unaffected

by a change of frame; it is only the components wμ that transform.

It is common to use γ to denote a matrix and then write w′ = γw or

e′ = eγ−1, where w is understood to be a column vector of components

and e is understood to be a row matrix of basis vectors. We will

attempt to always explicitly mention whether variables are matrices,

and will in most cases show indices when referring to components to

avoid confusion with the intrinsic vector field.

Below we summarize how some common objects transform under a

change of frame (γ−1)νμ.

Table 9.1.1 Transformations under a change of frame (γ−1)νμ.

Construct In the original frame In the transformed frame

Frame eμ e′ν = (γ−1)μνeμ

Dual frame βμ β′ν = γνμβμ

Vector field components wμ w′ν = γνμwμ

1-form components ϕμ ϕ′
ν = (γ−1)μνϕμ

Linear transformation Θμ
ν Θ′λ

σ = γλμΘμ
ν(γ−1)νσ

9.1.2 The parallel transporter

By definition, for a vector w at a point p of an n-dimensional manifold

M , parallel transport assigns a vector ‖C (w) at another point q that is

dependent upon a specific path C in M from p to q.

To see that this dependence upon the path matches our intuition, we can

consider a vector transported in what we might consider to be a “parallel”

fashion along the edges of an eighth of a sphere. In this example, the sphere

is embedded in R
3 and the concept of “parallel” corresponds to incremental

vectors along the path having a projection onto the original tangent plane

that is parallel to the original vector.
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Figure 9.1.1 A vector w transported in what we intuitively consider to be a
“parallel” way along two different paths (B and C = C1 + C2) on a surface
results in two different vectors.

The parallel transporter is therefore a map ‖C : TpM → TqM , where

C is a curve in M from p to q. To match our intuition we also require that

this map be linear (i.e. parallel transport is assumed to preserve the vector

space structure of the tangent space); that it be the identity for vanishing

C; that if C = C1 + C2 then ‖C=‖C2‖C1 ; and that the dependence on

C be smooth (this is most easily defined in the context of fiber bundles,

which we will cover in a later chapter). If we then choose a frame on

U ⊂ M , we have bases for each tangent space that provide isomorphisms

TpU ∼= Rn, TqU ∼= Rn. Thus the parallel transporter can be viewed as a

map ‖λ μ : {C} → GL (n,R) from the set of curves on U to the Lie group

GL (n,R); however, it is important to note that the values of ‖λ μ depend

upon the choice of frame.

9.1.3 The covariant derivative

Recall that the Lie derivative of a vector field Lvw compares the value of w

to its value after being “transported” by the local flow of v. Having defined

the parallel transporter, we can now consider the covariant derivative

∇vw ≡ lim
ε→0

1

ε
(w |p+εv − ‖C (w |p ))

= lim
ε→0

1

ε
(‖−C (w |p+εv )− w |p ) ,
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where C is an infinitesimal curve starting at p with tangent v. At a point

p, ∇vw then compares the value of w at p+ εv to its value at p after being

parallel transported to p+ εv, or equivalently in the limit ε→ 0, the value

of w at p to its value at p+ εv after being parallel transported back to p.

Recall from Section 6.1.2 that p+ εv is well-defined in the limit ε→ 0.
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Figure 9.1.2 The covariant derivative ∇vw is the difference between a vector
field w and its parallel transport in the direction v (for figure conventions, see the
box after Figure 6.3.2).

Two properties of ∇vw that are easy to verify are that is is linear in

v, and that for a function f on M it obeys the rule ∇v (fw) = v (f)w +

f∇v (w) = df (v)w + f∇v (w) . As we will see in Section 9.2.1, this is the

Leibniz rule for the covariant derivative generalized to the tensor algebra.

Note that ∇vw is a directional derivative, i.e. it depends only upon the

value of v at p; v is in effect used only to choose a direction. In contrast,

Lvw requires v to be a vector field, since w is in this case compared to its

value after being “transported” by the local flow of v, and so depends on

the derivative of v at p.

� It is important to remember that there is no way to “transport”

a vector on a manifold without introducing some extra structure. In

particular, recall that the exterior derivative does not compare vectors

at all.

Instead of parallel transport, one can consider the covariant derivative

as the fundamental structure being added to the manifold. In this case it is

useful to define the covariant derivative along a smooth parametrized curve
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C(t) by using the tangent to the curve as the direction, i.e.

D

dt
w ≡ Dtw ≡ ∇Ċ(t)w,

where Ċ(t) is the tangent to C at t. Dtw is sometimes called the absolute

derivative (AKA intrinsic derivative) and its definition only requires that

w be defined along the curve C(t). We can then define the parallel transport

of w |p along C(t) as the vector field w that satisfies Dtw = 0.

� The notation for the absolute derivative is potentially confusing since

the implicitly referenced curve C(t) does not appear in the expression

Dtw.

9.1.4 The connection

If we view ∇ as a map from two vector fields v and w to a third vector

field ∇vw, it is called an affine connection. Note that since no use has

been made of coordinates or frames in the definition of ∇, it is a frame-

independent quantity.

Since∇v is linear in v, and depends only on its local value, we can regard

∇ as a 1-form on M . If we choose a frame eμ on M with corresponding

dual frame βμ, we can define the connection 1-form

Γλ
μ (v) ≡ βλ (∇veμ) .

Γλ
μ (v) is the λth component of the difference between the frame eμ and

its parallel transport in the direction v.

From its definition, it is clear that Γλ
μ is a frame-dependent object.

Under a change of frame (γ−1)νμ, it is not hard to see that the connection

1-form transforms as

Γ′σ
τ = γσλΓ

λ
μ(γ

−1)μτ + γσλd(γ
−1)λτ ,

where the exterior derivative d operates on each of the matrix components

(γ−1)λτ as a 0-form. This affine mapping (inhomogeneous transformation)

under a change of frame, along with the way that the connection allows us

to view an infinitesimal area as an affine space, explains the name “affine

connection.” It also demonstrates that Γλ
μ cannot be viewed as the com-

ponents of a tensor, as expected since it is formed from the derivative of

the frame.
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At a point p, the value of Γλ
μ (v) is an infinitesimal linear transfor-

mation on TpM , so that Γλ
μ is a frame-dependent gl (n,R)-valued 1-form.

Recalling our notation for algebra-valued forms from Section 3.3.5, we can

then write

Γ̌ (v) 	w ≡ Γλ
μ (v)w

μeλ = (∇veμ)w
μ,

where we view 	w as a Rn-valued 0-form. The vector Γ̌ (v) 	w measures the

difference between the frame and its parallel transport in the direction v,

weighted by the components of w.

� It is important to remember that Γ̌ (v) 	w is related to the differ-

ence between the frame and its parallel transport, while ∇vw measures

the difference between w and its parallel transport; thus unlike ∇vw,

Γ̌ (v) 	w depends only upon the local value of w, but takes values that

are frame-dependent.

� Since we have used the frame to view Γ̌ as a gl (n,R)-valued 1-form,

i.e. a matrix-valued 1-form, 	w must be viewed as a frame-dependent

column vector of components. We could instead view Γ̌ as a gl (Rn)-

valued 1-form and 	w as a frame-independent intrinsic vector. In this

case the action of Γ̌ on 	w would be frame-independent, but the value

of Γ̌ itself would remain frame-dependent. We choose to use matrix-

valued forms due to the need below to take the exterior derivative of

component functions, but the abstract viewpoint is important to keep

in mind when generalizing to fiber bundles in Chapter 10.

Using this notation, we can view a change of frame as a (frame-

dependent) GL (n,R)-valued 0-form and write the transformation of the

connection 1-form under a change of frame as

Γ̌′ = γ̌Γ̌γ̌−1 + γ̌dγ̌−1.

9.1.5 The covariant derivative in terms of the connection

∇vw can be written in terms of Γ̌ by using the Leibniz rule from Section

9.1.3 with wμ as frame-dependent functions:
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∇vw = ∇v (w
μeμ)

= v (wμ) eμ + wμ∇v (eμ)

= dwμ (v) eμ + Γ̌ (v) 	w

≡ d	w (v) + Γ̌ (v) 	w

Here we again view 	w as a R
n-valued 0-form, so that d	w (v) ≡ dwμ (v) eμ.

Thus d	w (v) is the change in the components of w in the direction v, making

it frame-dependent even though w is not. Note that although ∇vw is a

frame-independent quantity, both terms on the right hand side are frame-

dependent. This is depicted in the following figure.
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Figure 9.1.3 Relationships between the frame, parallel transport, covariant
derivative, and connection for a vector w parallel to e1 at a point p.

☼ The relation∇vw = Γ̌ (v) 	w+d	w (v) can be viewed as roughly saying

that the change in w under parallel transport is equal to the change

in the frame relative to its parallel transport plus the change in the

components of w in that frame.

If the 1-form Γλ
μ (v) itself is written using component notation, we

arrive at the connection coefficients

Γλ
μσ ≡ Γλ

μ (eσ) = βλ (∇eσeμ) .

Γλ
μσ thus measures the λth component of the difference between eμ and its

parallel transport in the direction eσ.
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� This notation is potentially confusing, as it makes Γλ
μσ look like

the components of a tensor, which it is not: it is a derivative of the

component of the frame indexed by μ, and therefore is not only locally

frame-dependent but also depends upon values of the frame at other

points, so that it is not a multilinear mapping on its local arguments.

Similarly, d	w looks like a frame-independent exterior derivative, but it

is not: it is the exterior derivative of the frame-dependent components

of w.

� The ordering of the lower indices of Γλ
μσ is not consistent across

the literature (e.g. Wald [1984] vs C. Misner and Wheeler [1973]).

This is sometimes not remarked upon, possibly due to the fact that

in typical circumstances in general relativity (a coordinate frame and

zero torsion, to be defined in Section 9.2.4), the connection coefficients

are symmetric in their lower indices.

It is common to extend abstract index notation to be able to express the

covariant derivative in terms of the connection coefficients as follows:

∇eμw = dwλ (eμ) eλ + Γλ
σ (eμ)w

σeλ

⇒ ∇aw
b ≡ (∇eaw)

b
= ea

(
wb

)
+ Γb

caw
c

⇒ ∇aw
b = ∂aw

b + Γb
caw

c

Here we have also defined ∂af ≡ ∂eaf = df(ea) = ea(f). This notation

is also sometimes supplemented to use a comma to indicate partial differ-

entiation and a semicolon to indicate covariant differentiation, so that the

above becomes

wb
;a = wb

,a + Γb
caw

c.

The extension of index notation to derivatives has several potentially con-

fusing aspects:

• ∇a and ∂a written alone are not 1-forms

• Greek indices indicate only that a specific basis (frame) has been chosen

(Wald [1984] pp. 23-26), but do not distinguish between a general frame,

where ∂μf ≡ df(eμ), and a coordinate frame, where ∂μf ≡ ∂f/∂xμ
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• ∇aw
b ≡ (∇eaw)

b, so since ∇vw is linear in v, ∇aw
b is in fact a tensor of

type (1, 1); a more accurate notation might be (∇w)ba
• wb in the expression ∂aw

b ≡ dwb(ea) is not a vector, it is a set of frame-

dependent component functions labeled by b whose change in the direc-

tion ea is being measured

• The above means that, consistent with the definition of the connection

coefficients, we have ∇aeb = 0 + ecΓ
c
ba, since the components of the

frame itself by definition do not change

• As previously noted, neither Γb
ca nor Γb

caw
c are tensors

We will nevertheless use this notation for many expressions going forward,

as it is frequently used in general relativity.

� It is important to remember that expressions involving ∇a, ∂a, and

Γc
ba must be handled carefully, as none of these are consistent with

the original concept of indices denoting tensor components.

� Some texts will distinguish between the labels of basis vectors and

abstract index notation by using expressions such as (ei)
a. We will

not follow this practice, as it makes difficult the convenient method of

matching indexes in expressions such as ∂aw
b ≡ dwb(ea).

� If we choose coordinates xμ and use a coordinate frame so that

∂μ ≡ ∂/∂xμ, we have the usual relation ∂μ∂νf = ∂ν∂μf . However,

this is not necessarily implied by the Greek indices alone, which only

indicate that a particular frame has been chosen. For index notation

in general, mixed partials do not commute, since ∂a∂bf − ∂b∂af =

ea(eb(f)) − eb(ea(f)) = [ea, eb](f) = [ea, eb]
c∂cf , which only vanishes

in a holonomic frame.

9.1.6 The parallel transporter in terms of the connection

We can also consider the parallel transport of a vector w along an infinitesi-

mal curve C with tangent v. Referring to Figure 9.1.3, we see that to order

ε the components wμ transform according to

‖λ μ (C)w
μ = wλ − εΓλ

μ (v)w
μ,
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where v is tangent to the curve C, and these components are with respect

to the frame at the new point after infinitesimal parallel transport. Using

this relation, we can build up a frame-dependent expression for the par-

allel transporter for finite C by multiplying terms (1− εΓ |p ) where Γ |p
is used to denote the matrix Γλ

μ (v |p ) evaluated on the tangent v |p at

successive points p along C. The limit of this process is the path-ordered

exponential

‖λ μ (C) = lim
ε→0

(1− εΓ |q−ε ) (1− εΓ |q−2ε ) · · · (1− εΓ |p+ε ) (1− εΓ |p )

≡ P exp

⎛⎝−ˆ
C

Γλ
μ

⎞⎠ ,

whose definition is based on the expression for the exponential

ex = lim
n→∞

(
1 +

x

n

)n

= lim
ε→∞ (1 + εx)

1/ε
.

Note that the above expression for ‖λ μ (C) exponentiates frame-dependent

values in gl (n,R) to yield a frame-dependent value in GL (n,R).

9.1.7 Geodesics and normal coordinates

Following the example of the Lie derivative (Section 6.3.2), we can consider

parallel transport of a vector v in the direction v as generating a local flow.

More precisely, for any vector v at a point p ∈ M , there is a curve φv(t),

unique for some −ε < t < ε, such that φv(0) = p and φ̇v (t) =‖φ (v), the

last expression indicating that the tangent to φv at t is equal to the parallel

transport of v along φv from φv(0) to φv(t). This curve is called a geodesic,

and its tangent vectors are all parallel transports of each other. This means

that for all tangent vectors v to the curve, ∇vv = 0, so that geodesics are

“the closest thing to straight lines” on a manifold with parallel transport.

Now following the example of Lie groups (Section 7.2.2), we can define

the exponential map at p to be exp(v) ≡ φv(1), which will be well-defined

for values of v around the origin that map to some U ⊂ M containing

p. Finally, choosing a basis for TpU provides an isomorphism TpU ∼= Rn,

allowing us to define geodesic normal coordinates (AKA normal coordi-

nates) exp−1 : U → Rn. It can be shown (see Kobayashi and Nomizu [1963]

Vol. 1 pp148-149) that in a coordinate frame at the origin p of geodesic nor-

mal coordinates, we have Γλ
μσ = −Γλ

σμ; this implies that for zero torsion

(to be defined in Section 9.2.4), the connection coefficients vanish at p.
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Figure 9.1.4 Geodesic normal coordinates at p map points on a manifold to
vectors at p tangent to the geodesic passing through both points. In the figure
exp(2v) = φv(2), so the coordinate of the point φv(2) ∈M is 2v ∈ TpM .

This is the third time we have utilized the concept of the flows (AKA

integral curves, field lines, streamlines, trajectories, orbits) of vector fields.

The relationships between these three situations are summarized below.
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Table 9.1.2 Flows and related constructs in three different contexts.

Lie derivative Lie group Covariant derivative

Added

structure on

M

Vector field v Group structure

on points

Parallel transport

‖C (v)

Vector field on

M

v Left-invariant

vector fields A

Tangents to

geodesics

Flow of vector

field

Local flow vp(t) One-parameter

subgroup φA(t)

Geodesics φv(t)

Exponential

map of flow

Local one-parameter

diffeomorphism

Φt(v) ≡ vp(t)

eA ≡ φA(1) exp(v) ≡ φv(1)

Diffeo-

morphism of

exp

Local in general,

global if v is

complete

Local to identity Local to origin of

exp

Vector

transport by

flow

Tangent map (only

along v)

Tangent map along

A

Parallel translation

along geodesics

‖φ (v)

Vector

derivative

from transport

Lvw is the difference

between w and its

transport by the

local flow of v

[A,B] is the

difference between

B and its

transport by the

local flow of A

∇vw is the

difference between w

and its parallel

transport in the

direction v

9.1.8 Summary

In general, a “manifold with connection” is one with an additional structure

that “connects” the different tangent spaces of the manifold to one another

in a linear fashion. Specifying any one of the above connection quantities,

the covariant derivative, or the parallel transporter equivalently determines

this structure. The following tables summarize the situation.
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Table 9.1.3 Constructions related to the connection.

Construct Argument(s) Value Dependencies

‖C v ∈ TpM ‖C (v) ∈ TqM Path C from p to q

‖λ μ Path C ‖λ μ (C) ∈ GL Frame on M

∇v w ∈ TM ∇vw ∈ TpM v ∈ TpM

∇ v ∈ TpM , w ∈ TM ∇vw ∈ TpM None

Γλ
μ v ∈ TpM Γλ

μ (v) ∈ gl Frame on M

Γ̌ (v) �w ∈ TpM Γ̌ (v) �w ∈ TpM Frame on M , v ∈ TpM

Γλ
μσ None Connection coefficient Frame on M

Notes: Each construct above is considered at a point p; to determine a

manifold with connection it must be defined for every point in M .

Below we review the intuitive meanings of the various vector derivatives.
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Table 9.1.4 Definitions and meanings of vector derivatives.

Vector derivative Meaning

Lvw ≡ lim
ε→0

(w |p+εv − dΦε (w |p )) /ε The difference between w and its

transport by the local flow of v.

∇vw ≡ lim
ε→0

(w |p+εv − ‖C (w |p )) /ε The difference between w and its parallel

transport in the direction v.
D
dt
w ≡ Dtw ≡ ∇Ċ(t)w The difference between w and its parallel

transport in the direction tangent to C(t).

Γλ
μ (v) ≡ βλ (∇veμ) The λth component of the difference

between eμ and its parallel transport in

the direction v.

Γ̌ (v) ≡ ∇v (TpM) The infinitesimal linear transformation on

the tangent space that takes the parallel

transported frame to the frame in the

direction v.

Γ̌ (v) �w ≡ Γλ
μ (v)wμeλ = (∇veμ)wμ The difference between the frame and its

parallel transport in the direction v,

weighted by the components of w.

Γλ
μσ ≡ Γλ

μ (eσ) = βλ (∇σeμ) The λth component of the difference

between eμ and its parallel transport in

the direction eσ.

d�w (v) ≡ dwμ (v) eμ The change in the frame-dependent

components of w in the direction v.

∂awb ≡ dwb(ea) The change in the bth frame-dependent

component of w in the direction ea.

∇awb ≡ (∇eaw)
b The bth component of the difference

between w and its parallel transport in the

direction ea.

Other quantities in terms of the connection:

• ∇vw = d	w (v) + Γ̌ (v) 	w

• ∇aw
b = ∂aw

b + Γb
caw

c

• ‖λ μ (C)w
μ = wλ − εΓλ

μ (v)w
μ (for infinitesimal C with tangent v)

• ‖λ μ (C)w
μ = P exp

(− ´C Γλ
μ

)
wμ
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9.2 Manifolds with connection

All of the above constructs used to define a manifold with connection ma-

nipulate vectors, which means they can be naturally extended to operate

on arbitrary tensor fields on M . This is the usual approach taken in gen-

eral relativity; however, one can alternatively focus on k-forms on M , an

approach that generalizes more directly to gauge theories in physics. This

viewpoint is sometimes called the Cartan formalism. We will cover both

approaches.

Since many of the standard texts in this area only cover one of these

viewpoints, and in addition often assume a coordinate frame, a metric,

and/or zero torsion (to be defined in Section 9.2.4), we include a bit more

calculational detail here than in other sections.

� Note that a manifold with connection includes no concept of length

or distance (a metric). It is important to remember that unless noted,

nothing in this section depends upon this extra structure.

9.2.1 The covariant derivative on the tensor algebra

If we define the covariant derivative of a function to coincide with the

normal derivative, i.e. ∇af ≡ ∂af , then we can use the Leibniz rule to

define the covariant derivative of a 1-form. This is sometimes described as

making the covariant derivative “commute with contractions,” where for a

1-form ϕ and a vector v we require

∇a

(
ϕbv

b
) ≡ (∇aϕb) v

b + ϕb

(∇av
b
)

= (∇aϕb) v
b + ϕb

(
∂av

b + Γb
cav

c
)
.

At the same time, choosing a frame and treating ϕb and vb as frame-

dependent functions on M , we have

∇a

(
ϕbv

b
) ≡ ∂a

(
ϕbv

b
)

= (∂aϕb) v
b + ϕb

(
∂av

b
)
,

so that equating the two we arrive at

∇aϕb ≡ ∂aϕb − Γc
baϕc.

As with vectors, the partial derivative ∂aϕb acts upon the frame-dependent

components of the 1-form.
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We can then extend the covariant derivative to be a derivation on the

tensor algebra by following the above logic for each covariant and con-

travariant component:

∇aT
b1...bm

c1...cn ≡ ∂aT
b1...bm

c1...cn

+

m∑
j=1

Γbj
daT

b1...bj−1dbj+1...bm
c1...cn

−
n∑

j=1

Γd
cjaT

b1...bm
c1...cj−1dcj+1...cn

Note that since the covariant derivative of a 0-form is ∇af = ∂af = ∂eaf =

ea(f), we then have ∇vf = va∇af = vaea(f) = v(f).

The concept of parallel transport along a curve C can be extended to

the tensor algebra as well, by parallel transporting all vector arguments

backwards to the starting point of C, applying the tensor, then parallel

transporting the resulting vectors forward to the endpoint of C. So for

example the parallel transport of a tensor T a
b is defined as

‖C (T a
b) ≡‖a c (C)T

c
d ‖d b (−C)

= (1− εΓa
c (v))T

c
d

(
1 + εΓd

b (v)
)
,

where for infinitesimal C with tangent v we have ‖−1
C =‖−C= 1 + εΓ̌ (v)

since ‖C= 1− εΓ̌ (v).
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Figure 9.2.1 The parallel transport of a tensor can be defined by parallel trans-
porting all vector arguments backwards to the starting point, applying the tensor,
then parallel transporting the resulting vectors forward to the endpoint.

With this definition, the covariant derivative∇aT can be viewed as “the

difference between T and its parallel transport in the direction ea.”
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� It can sometimes be confusing when using the extended covariant

derivative as to what type of tensor it is being applied to. For example,

wb in the expression ∂aw
b is not a vector, it is a set of frame-dependent

functions labeled by b; yet this expression can in theory also be written

∇aw
b, in which case there is no indication that the covariant derivative

is acting on these functions instead of the vector wb.

� When the covariant derivative is used as a derivation on the ten-

sor algebra, care must be taken with relations, since their forms

can change considerably based upon what arguments are applied and

whether index notation is used. In particular, (∇a∇b − ∇b∇a)f =

∇a(∂bf)−∇b(∂af) is not a “mixed partials” expression, since (∂af) is

a 1-form. And as we will see, (∇a∇b −∇b∇a)f is a different construc-

tion than (∇a∇b−∇b∇a)w
c, which is different from (∇u∇v−∇v∇u)w.

It is important to realize that an expression such as∇a∇b−∇b∇a with-

out context has no unambiguous meaning.

� It is important to remember that since expressions like ∂aw
b and

Γc
ba are not tensors, applying ∇d to them is not well-defined (unless

we consider them as arrays of functions and are applying ∇d = ∂d).

9.2.2 The exterior covariant derivative of vector-valued

forms

A vector field w on M can be viewed as a vector-valued 0-form. As noted

previously, the covariant derivative ∇vw is linear in v and depends only on

its local value, and so can be viewed as a vector-valued 1-form D	w(v) ≡
∇vw. D	w is called the exterior covariant derivative of the vector-valued

0-form 	w. This definition is then extended to vector-valued k-forms 	ϕ by

following the example of the exterior derivative d in Section 6.3.5:
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D	ϕ (v0, . . . , vk)

≡
k∑

j=0

(−1)j ∇vj (	ϕ (v0, . . . , vj−1, vj+1, . . . , vk))

+
∑
i<j

(−1)i+j 	ϕ ([vi, vj ] , v0, . . . , vi−1, vi+1, . . . , vj−1, vj+1, . . . , vk)

For example, if 	ϕ is a vector-valued 1-form, we have

D	ϕ (v, w) = ∇v 	ϕ (w)−∇w 	ϕ (v)− 	ϕ ([v, w]) .

So while the first term of dϕ takes the difference between the scalar values

of ϕ(w) along v, the first term of D	ϕ takes the difference between the vector

values of 	ϕ(w) along v after parallel transporting them to the same point

(which is required to compare them). At a point p, D	ϕ (v, w) can thus

be viewed as the “sum of 	ϕ on the boundary of the surface defined by its

arguments after being parallel transported back to p,” and if we use ‖εv to

denote parallel transport along an infinitesimal curve with tangent v, we

can write

ε2D	ϕ (v, w) = ‖−εv 	ϕ (εw |p+εv )− 	ϕ (εw |p )
− ‖−εw 	ϕ (εv |p+εw ) + 	ϕ (εv |p )
− 	ϕ

(
ε2 [v, w]

)
.
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Figure 9.2.2 The exterior covariant derivative D�ϕ (v, w) sums the vectors �ϕ
along the boundary of the surface defined by v and w by parallel transporting
them to the same point. Note that the “completion of the parallelogram” [v, w]
is already of order ε2, so its parallel transport has no effect to this order.
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From its definition, it is clear that D	ϕ is a frame-independent quantity.

In terms of the connection, we must consider 	w as a frame-dependent Rn-

valued 0-form, so that

D	w (v) = ∇vw = d	w (v) + Γ̌ (v) 	w.

For a R
n-valued k-form 	ϕ we find that

D	ϕ = d	ϕ+ Γ̌ ∧ 	ϕ,
where the exterior derivative is defined to apply to the frame-dependent

components, i.e. d	ϕ(v0 . . . vk) ≡ dϕμ(v0 . . . vk)eμ. Recall that Γ̌ is a

gl(n,R)-valued 1-form, so that for example if 	ϕ is a Rn-valued 1-form then

(Γ̌ ∧ 	ϕ) (v, w) ≡ Γ̌ (v) 	ϕ (w)− Γ̌ (w) 	ϕ (v) = Γλ
μ (v)ϕ

μ (w)− Γλ
μ (w)ϕ

μ (v).

� As with the covariant derivative, it is important to remember that

D	ϕ is frame-independent while d	ϕ and Γ̌ are not.

The set of vector-valued forms can be viewed as an infinite-dimensional

algebra by defining multiplication via the vector field commutator; it turns

out that D does not satisfy the Leibniz rule in this algebra and so is not

a derivation. However, following the above reasoning one can extend the

definition of D to the algebra of tensor-valued forms, or the subset of anti-

symmetric tensor-valued forms; D then is a derivation with respect to the

tensor product in the former case and a graded derivation with respect to

the exterior product in the latter case. We will not pursue either of these

two generalizations.

9.2.3 The exterior covariant derivative of algebra-valued

forms

Recalling from Section 9.2.1 the definition of parallel transport of a tensor,

we can view a gl(n,R)-valued 0-form Θ̌ as a tensor field of type (1, 1), so

that the infinitesimal parallel transport of Θ̌ along C with tangent v is

‖C (Θ̌) =
(
1− εΓ̌ (v)

)
Θ̌
(
1 + εΓ̌ (v)

)
.

We can now follow the reasoning used to define the covariant derivative of

a vector in terms of the connection
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∇vw ≡ lim
ε→0

1

ε
(w |p+εv − ‖C (w |p ))

= lim
ε→0

1

ε

(
	w |p+εv −

(
1− εΓ̌ (v)

)
	w |p

)
= lim

ε→0

1

ε

(
wμ |p+εv − wμ |p + εΓμ

λ (v)w
λ |p

)
eμ |p+εv

= d	w (v) + Γ̌ (v) 	w

to give the covariant derivative of a gl(n,R)-valued 0-form

∇vΘ̌ ≡ lim
ε→0

1

ε

(
Θ̌ |p+εv − ‖C

(
Θ̌ |p

))
= lim

ε→0

1

ε

(
Θ̌ |p+εv −

(
1− εΓ̌ (v)

)
Θ̌ |p

(
1 + εΓ̌ (v)

))
= dΘ̌ (v) + Γ̌ (v) Θ̌− Θ̌Γ̌ (v)

= dΘ̌ (v) +
[
Γ̌, Θ̌

]
(v)

= dΘ̌ (v) +
(
Γ̌[∧]Θ̌)

(v) .

Here we have only kept terms to order ε, followed previous convention to

define dΘ̌ (v) ≡ dΘμ
λβ

λeμ, and defined the Lie commutator [Γ̌, Θ̌] in terms

of the multiplication of the gl(n,R)-valued forms Γ̌ and Θ̌, which recalling

our notation from Section 3.3.5 as a 1-form is equivalent to Γ̌[∧]Θ̌.∇vΘ̌ is

then “the difference between the linear transformation Θ̌ and its parallel

transport in the direction v.”

The above definition of the covariant derivative can then be extended

to arbitrary gl(n,R)-valued k-forms by defining

DΘ̌ ≡ dΘ̌ + Γ̌[∧]Θ̌,
which can be shown to be equivalent to the construction used for Rn-valued

k-forms in Section 9.2.2. For example, for a gl(n,R)-valued 1-form Θ̌,

we have DΘ̌ (v, w) ≡ ∇vΘ̌ (w) − ∇wΘ̌ (v) − Θ̌ ([v, w]), with the covariant

derivatives acting on the value of Θ̌ as a tensor of type (1, 1). So at a point

p, DΘ̌ (v, w) can be viewed as the “sum of Θ̌ on the boundary of the surface

defined by its arguments after being parallel transported back to p.” With

respect to the set of gl(n,R)-valued forms under the exterior product using

the Lie commutator [∧], D is a graded derivation and for a gl(n,R)-valued

k-form Θ̌ satisfies the Leibniz rule D(Θ̌[∧]Ψ̌) = DΘ̌[∧]Ψ̌ + (−1)k Θ̌[∧]DΨ̌.
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9.2.4 Torsion

Given a frame eμ, we can view the dual frame βμ as a vector-valued 1-form

that simply returns its vector argument: 	β (v) ≡ βμ (v) eμ = v. Clearly

this is a frame-independent object. The torsion is then defined to be the

exterior covariant derivative

	T ≡ D	β.

In terms of the connection, we must consider 	β as a frame-dependent Rn-

valued 1-form, which gives us the torsion as a Rn-valued 2-form

	T = d	β + Γ̌ ∧ 	β.
This definition of 	T is sometimes called Cartan’s first structure equa-

tion.

In terms of the covariant derivative, the torsion 2-form is

	T (v, w) ≡ ∇v

(
	β (w)

)
−∇w

(
	β (v)

)
− 	β ([v, w])

= ∇vw −∇wv − [v, w] .

For a torsion-free connection in a holonomic frame, we then have ∇σeμ =

∇μeσ, which means that the connection coefficients are symmetric in their

lower indices, i.e. Γλ
μσ ≡ βλ (∇σeμ) = βλ (∇μeσ) = Γλ

σμ. For this reason,

a torsion-free connection is also called a symmetric connection.

From the definition in terms of the exterior covariant derivative, we

can view the torsion as the “sum of the boundary vectors of the surface

defined by its arguments after being parallel transported back to p,” i.e.

the torsion measures the amount by which the boundary of a loop fails to

close after being parallel transported. From the definition in terms of the

covariant derivative, we arrive in the figure below at another interpretation

where, like the Lie derivative Lvw, 	T (v, w) “completes the parallelogram”

formed by its vector arguments, but this parallelogram is formed by parallel

transport instead of local flow. Note however that the torsion vector has

the opposite sign as the Lie derivative.
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Figure 9.2.3 The torsion vector �T (v, w), constructed above starting at the point
q, “completes the parallelogram” formed by parallel transport. ‖εv denotes par-
allel transport along an infinitesimal curve with tangent v.

Zero torsion then means that moving infinitesimally along v followed by

the parallel transport of w is the same as moving infinitesimally along w

followed by the parallel transport of v. Non-zero torsion signifies that “a

loop made of parallel transported vectors is not closed.”

As this geometric interpretation suggests, and as is evident from the

expression 	T ≡ D	β, one can verify algebraically that despite being defined

in terms of derivatives 	T (v, w) in fact only depends on the local values of

v and w, and thus can be viewed as a tensor of type (1, 2):

T c
abv

awb ≡ va∇aw
c − wa∇av

c − [v, w]c

Another relation can be obtained for the torsion tensor by applying its

vector value to a function f before moving into index notation:

	T (v, w) (f) ≡ (∇vw) (f)− (∇wv) (f)− [v, w] (f)

⇒ T c
abv

awb∇cf =
(
va∇aw

b
)∇bf −

(
wb∇bv

a
)∇af

− [
va∇a

(
wb∇bf

)− wb∇b (v
a∇af)

]
⇒ T c

ab∇cf = ∇b∇af −∇a∇bf

Here we have used the Leibniz rule and recalled that v(f) = ∇vf = va∇af

and [v, w](f) = v(w(f)) − w(v(f)). In terms of the connection coefficients

Γc
ab = βc∇bea we have

T c
ab = βc 	T (ea, eb)

= βc∇aeb − βc∇bea − βc[ea, eb]

= Γc
ba − Γc

ab − [ea, eb]
c.
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� Note that zero torsion thus always means that ∇a∇bf = ∇b∇af

(and [v, w] = Lvw = ∇vw − ∇wv), but it only means Γλ
μσ = Γλ

σμ in

a holonomic frame.

In the previous figure, the failure of the parallel transported vectors

to meet can be viewed as either due to their lengths changing or due to

their being rotated out of the plane of the figure. As we will see, the latter

interpretation is more relevant for Riemannian manifolds, where parallel

transport leaves lengths invariant. In Einstein-Cartan theory in physics,

non-zero torsion is associated with spin in matter. An example along these

lines that highlights the rotation aspect of torsion is Euclidean R
3 with

parallel transport defined by translation, except in the x direction where

parallel transport rotates a vector clockwise by an angle proportional to

the distance transported. As we will see in the next section, this parallel

transport has torsion but no curvature.

��

�	��������

��������
��������

��

Figure 9.2.4 An example of non-zero torsion suggestive of spin.

Zero torsion means that Lvw = [v, w] = ∇vw − ∇wv due to the sym-

metric connection coefficients canceling. This extends to the Lie derivative

of a general tensor, so that in the case of zero torsion we have

LvT
a1...am

b1...bn = vc∇cT
a1...am

b1...bn

−
m∑
j=1

(∇cv
aj )T a1...aj−1caj+1...am

b1...bn

+

n∑
j=1

(∇bjv
c
)
T a1...am

b1...bj−1cbj+1...bn .
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9.2.5 Curvature

The exterior covariant derivative D parallel transports its values on the

boundary before summing them, and therefore we do not expect it to mimic

the property d2 = 0. Indeed it does not; instead, for a vector field w viewed

as a vector-valued 0-form 	w, we have

(
D2 	w

)
(u, v) ≡ Ř (u, v) 	w = ∇u∇vw −∇v∇uw −∇[u,v]w,

which defines the curvature 2-form Ř, which is gl(Rn)-valued. From its

definition, Ř 	w is a frame-independent quantity, and thus if 	w is considered

as a vector-valued 0-form, Ř is frame-independent as well. In the (more

common) case that we view 	w as a frame-dependent Rn-valued 0-form, Ř

must be considered to be gl(n,R)-valued, and is thus a frame-dependent

matrix, transforming under a (frame-dependent) GL(n,R)-valued 0-form

γ̌−1 change of frame like

Ř′ = γ̌Řγ̌−1.

A connection with zero curvature is called flat, as is any region of M with

a flat connection.

For a general Rn-valued form 	ϕ it is not hard to arrive at an expression

for Ř in terms of the connection:

D2	ϕ =
(
dΓ̌ + Γ̌ ∧ Γ̌

) ∧ 	ϕ ≡ Ř ∧ 	ϕ
Note that DΓ̌ = dΓ̌ + Γ̌[∧]Γ̌ is a similar but distinct construction, since

e.g. (Γ̌ ∧ Γ̌) (v, w) = Γ̌ (v) Γ̌ (w) − Γ̌ (w) Γ̌ (v), while (Γ̌[∧]Γ̌) (v, w) =

[Γ̌ (v) , Γ̌ (w)]− [Γ̌ (w) , Γ̌ (v)] = 2(Γ̌ ∧ Γ̌) (v, w). Thus we have

Ř ≡ dΓ̌ + Γ̌ ∧ Γ̌

= dΓ̌ +
1

2
Γ̌[∧]Γ̌.

The definition of Ř in terms of Γ̌ is sometimes called Cartan’s second

structure equation. An immediate property from the definition of Ř is

Ř(u, v) = −Ř(v, u), which allows us to write e.g. for a vector-valued 1-form

	ϕ (
D2	ϕ

)
(u, v, w) ≡ (

Ř ∧ 	ϕ) (u, v, w)
= Ř (u, v) 	ϕ(w) + Ř (v, w) 	ϕ(u) + Ř (w, u) 	ϕ(v).

Constructing the same picture as we did for the double exterior deriva-

tive in Section 6.3.4, we put D2 	w ≡ D	ϕ, where 	ϕ(v) ≡ D	w(v) = ∇vw.
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Expanding both derivatives in terms of parallel transport, we find in the

following figure that as we sum values around the boundary of the surface

defined by its arguments, D2 fails to cancel the endpoint and starting point

at the far corner. Examining the values of these non-canceling points, we

can view the curvature as “the difference between w when parallel trans-

ported around the two opposite edges of the boundary of the surface defined

by its arguments.”
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Figure 9.2.5 Ř (u, v) �w =
(
D2 �w

)
(u, v) is “the difference between w when par-

allel transported around the two opposite edges of the boundary of the surface
defined by its arguments.” In the figure we assume vanishing Lie bracket for
simplicity, so that v |p+εu+εv = v |p+εv+εu .

In terms of the connection, we can use the path integral formulation to

examine the parallel transporter around the closed path L ≡ ∂S defined

by the surface S ≡ (εu ∧ εv) to order ε2. This calculation after some work

(see Göckeler and Schücker [1987] pp. 51-53) yields

‖L (w) = P exp

(
−
ˆ
L

Γ̌

)
	w = w −

ˆ
S

(
dΓ̌ + Γ̌ ∧ Γ̌

)
	w = w − ε2Ř (u, v) 	w,

where we have dropped the indices since L is a closed path and thus ‖L
is basis-independent. Thus the curvature can be viewed as “the difference

between w and its parallel transport around the boundary of the surface

defined by its arguments.”
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Figure 9.2.6 Ř (u, v) �w is “the difference between w and its parallel transport
around the boundary of the surface defined by its arguments.”

As these pictures suggest, one can verify algebraically that the value of

Ř (u, v) 	w at a point p only depends upon the value of w at p, even though

it can be defined in terms of ∇w, which depends upon nearby values of

w. Similarly, Ř (u, v) 	w at a point p only depends upon the values of u

and v at p, even though it can be defined in terms of [u, v], which depends

upon their vector field values (note that ∇u∇vw depends upon the vector

field values of both v and w). Finally, Ř (as a gl(Rn)-valued 2-form) is

frame-independent, even though it can be defined in terms of Γ̌, which is

not. Thus the curvature can be viewed as a tensor of type (1, 3), called the

Riemann curvature tensor (AKA Riemann tensor, curvature tensor,

Riemann-Christoffel tensor):

Rc
dabu

avbwd ≡ ua∇a

(
vb∇bw

c
)− vb∇b (u

a∇aw
c)− [u, v]d∇dw

c

= uavb∇a∇bw
c − uavb∇b∇aw

c + T d
abu

avb∇dw
c

⇒ Rc
dabw

d =
(∇a∇b −∇b∇a + T d

ab∇d

)
wc

Here we have used the Leibniz rule and recalled that [u, v]d = ua∇av
d −

vb∇bu
d − T d

abu
avb.

To obtain an expression in terms of the connection coefficients, we first

examine the double covariant derivative, recalling that ∇bw
c is a tensor:

∇a (∇bw
c) = ∂a∇bw

c + Γc
fa∇bw

f − Γf
ba∇fw

c

= ∂a∂bw
c + ∂a(Γ

c
fbw

f )

+ Γc
fa∂bw

f + Γc
faΓ

f
gbw

g − Γf
ba∇fw

c

= ∂a∂bw
c + ∂aΓ

c
fbw

f

+ Γc
fb∂aw

f + Γc
fa∂bw

f

+ Γc
faΓ

f
gbw

g − Γf
ba∇fw

c.
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When we subtract the same expression with a and b reversed, we recognize

that for the functions wc we have ∂a∂bw
c − ∂b∂aw

c = [ea, eb]
d∂dw

c, that

the second line Γc
fb∂aw

f + Γc
fa∂bw

f vanishes, and that Γf
ba − Γf

ab =

[ea, eb]
f + T f

ab, so that

(∇a∇b −∇b∇a)w
c = [ea, eb]

d∂dw
c + ∂aΓ

c
fbw

f − ∂bΓc
faw

f

+ Γc
faΓ

f
gbw

g − Γc
fbΓ

f
gaw

g

− (
[ea, eb]

f + T f
ab

)∇fw
c,

and thus relabeling dummy indices to obtain an expression in terms of wd,

we arrive at

Rc
dabw

d =
(∇a∇b −∇b∇a + T d

ab∇d

)
wc

=
(
∂aΓ

c
db − ∂bΓc

da + Γc
faΓ

f
db − Γc

fbΓ
f
da − [ea, eb]

fΓc
df

)
wd.

This expression follows much more directly from the expression Ř ≡ dΓ̌ +

Γ̌ ∧ Γ̌, but the above derivation from the covariant derivative expression is

included here to clarify other presentations which are sometimes obscured

by the quirks of index notation for covariant derivatives.

� The derivation above makes clear how the expression for the cur-

vature in terms of the covariant derivative simplifies to Rc
dabw

d =

(∇a∇b −∇b∇a)w
c for zero torsion but is unchanged in a holonomic

frame, while in contrast the expression in terms of the connection coeffi-

cients is unchanged for zero torsion but in a holonomic frame simplifies

to omit the term [ea, eb]
fΓc

dfw
d.

� Note that the sign and the order of indices of R as a tensor are not

at all consistent across the literature.

9.2.6 First Bianchi identity

If we take the exterior covariant derivative of the torsion, we get

D	T = DD	β = Ř ∧ 	β.
This is called the first (AKA algebraic) Bianchi identity. Using the

antisymmetry of Ř, we can write the first Bianchi identity explicitly as
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D	T (u, v, w) = Ř(u, v)	w + Ř(v, w)	u + Ř(w, u)	v.

In the case of zero torsion, this identity becomes Ř∧ 	β = 0, which in index

notation can be written Rc
[dab] = 0.

We can find a geometric interpretation for this identity by first con-

structing a variant of our picture of Ř(u, v)	w as the change in 	w after

being parallel transported in opposite directions around a loop. Taking

advantage of our previous result that Ř(u, v)	w only depends upon the local

values of u and v, we are free to construct their vector field values such

that [u, v] = 0. We then examine the difference between 	w being parallel

transported in each direction halfway around the loop. For infinitesimal

parallel transport from a point p along a curve C with tangent v we have

‖εv (w |p ) ≡‖C (w |p ) = w |p+εv − ε∇vw |p . Therefore we find that

‖εu‖εv (w |p ) =‖εu (w |p+εv − ε∇vw |p )
= w |p+εv+εu − ε∇vw

∣∣
p+εu − ε∇uw |p+εv + ε2∇u∇vw |p,

so that

‖εu‖εv (w |p )− ‖εv‖εu (w |p ) = ε2∇u∇vw |p − ε2∇v∇uw |p
= ε2Ř(u, v)	w,

since [u, v] = 0 means that w |p+εv+εu = w |p+εu+εv . In the case of zero

torsion, we can further take advantage of our freedom in choosing the vector

field values of u and v by requiring them to equal their parallel transports,

i.e. v |p+εu ≡‖εu (v |p ) and u |p+εv ≡‖εv (u |p ), preserving the property

[u, v] = 0 due to the vanishing torsion.
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Figure 9.2.7 A slight variant of Ř (u, v) �w viewed as “the difference between w
when parallel transported around the two opposite edges of the boundary of the
surface defined by its arguments.” In the case of zero torsion, the boundary can
be built from parallel transports instead of vector field values.

Thus, still assuming zero torsion, we can construct a cube from the

parallel translations of u, v, and w. This construction reveals that the first

Bianchi identity corresponds to the fact that the three curvature vectors

form a triangle, i.e. their sum is zero.
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Figure 9.2.8 The first Bianchi identity reflects the fact that for zero torsion,
the far corners of a cube made of parallel transported vectors do not meet, and
their separation is made up of the differences in parallel transport via opposite
edges of each face. Note that the corners of the triangle are points since vanishing
torsion means that e.g. εu+ ‖εu (εw) = εw+ ‖εw (εu), so that the top point of
the triangle reflects this equality parallel transported by εv.

9.2.7 Second Bianchi identity

If we take the exterior covariant derivative of the curvature, we get

DŘ = 0.

This is called the second Bianchi identity, and can be verified alge-

braically from the definition Ř ≡ dΓ̌ + Γ̌ ∧ Γ̌. We can write this identity

more explicitly as

0 = DŘ(u, v, w)	a

= ∇uŘ(v, w)	a+∇vŘ(w, u)	a+∇wŘ(u, v)	a

− Ř([u, v], w)	a− Ř([v, w], u)	a − Ř([w, u], v)	a,



October 20, 2017 17:37 Mathematics for Physics 9in x 6in b3077 page 191

9.2. Manifolds with connection 191

where we have used the antisymmetry of Ř and the covariant derivative

acts on the value of Ř as a tensor of type (1, 1). Working this expression

into tensor notation and using the tensor expression for the torsion in terms

of the commutator, we find that

0 = ∇eR
c
dab +∇aR

c
dbe +∇bR

c
dea

− Rc
dfeT

f
ab −Rc

dfaT
f
be −Rc

dfbT
f
ea,

or

Rc
d[ab;e] = Rc

df [eT
f
ab],

and in the case of zero torsion, Rc
d[ab;e] = 0.

Geometrically, the second Bianchi identity can be seen as reflecting the

same “boundary of a boundary” idea as that of d2 = 0 in Figure 6.3.8,

except that here we are parallel transporting a vector 	a around each face

that makes up the boundary of the cube. As in the previous section, we can

take advantage of the fact that Ř(v, w)	a only depends upon the local value

of 	a, constructing its vector field values such that e.g. 	a |p+εu =‖εu (	a |p ),
giving us

ε∇uŘ(v, w)	a = Ř(v |p+εu , w |p+εu )	a |p+εu − ‖εu Ř(v, w) ‖−1
εu 	a |p+εu

= Ř(v |p+εu , w |p+εu ) ‖εu 	a− ‖εu Ř(v, w)	a.
The first term parallel translates 	a along εu and then around the parallel-

ogram defined by v and w at p + εu, while the second parallel translates

	a around the parallelogram defined by v and w at p, then along εu. Thus

in the case of vanishing Lie commutators (e.g. a holonomic frame), we

construct a cube from the vector fields u, v, and w, and find that the sec-

ond Bianchi identity reflects the fact that DŘ(u, v, w)	a parallel translates 	a

along each edge of the cube an equal number of times in opposite directions,

thus canceling out any changes.
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Figure 9.2.9 The second Bianchi identity reflects the fact that for vanishing Lie
commutators, DŘ(u, v, w)�a parallel translates �a along each edge of the cube made
of the three vector field arguments an equal number of times in opposite directions,
thus canceling out any changes. Above, ε∇uŘ(v, w)�a = Ř(v |p+εu , w |p+εu ) ‖εu
�a− ‖εu Ř(v, w)�a is highlighted by the bold arrows representing the path along
which �a is parallel translated in the first term, and by the remaining dark arrows
representing the path along which �a is parallel translated in the second term.

In the case of a non-vanishing commutator, e.g. [u, v] �= 0, we find that

the cube gains a “shaved edge,” and that the extra non-vanishing term

−Ř([u, v], w)	a in DŘ maintains the “boundary of a boundary” logic by

adding a loop of parallel translation of 	a in the proper direction around the

new “face” created.

��
���

�
�����

��

Figure 9.2.10 In the case of a non-vanishing commutator, the extra term
−Ř([u, v], w)�a in DŘ maintains the cancellation of face boundaries by adding
a loop L around the new “shaved edge” created.
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9.2.8 The holonomy group

We have seen that on a manifold with connection, the curvature measures

the effect of a vector being parallel transported around an infinitesimal loop.

If we consider the set of all closed loops at a basepoint p on a connected

manifold with connection Mn, the associated linear transformations due

to parallel transport of a vector around each loop form a group called the

holonomy group Hol(M). The restricted holonomy group Hol0(M)

only counts loops homotopic to zero.

From the definition of the parallel transporter we can see that Hol(M) is

in fact a group, and also a subgroup of GL(Rn), and therefore a Lie group.

We can also see that for a connected manifold it is independent of the

basepoint p, since changing basepoints induces a similarity transformation

(change of basis), altering the matrix representation of the group but acting

as an isomorphism on the abstract group. If M is simply connected, then

Hol0(M) = Hol(M); if not, then Hol0(M) is the identity component of

Hol(M), which is a group representation of the fundamental group of M

called the monodromy representation.

�

��

��





��

��

�

���

Figure 9.2.11 The holonomy group is comprised of elements ‖L∈ GL(Rn) asso-
ciated with parallel translation around loops; changing the basepoint of the loop
from p to q induces a similarity translation ‖−1

C ‖L‖C , leaving the abstract group
unchanged.

Since the curvature is the infinitesimal version of the holonomy con-

struction, we might expect that it be related to the Lie algebra of Hol(M),

which is called the holonomy algebra. The Ambrose-Singer theorem

confirms this; in the case of a simply connected manifold, it says that the

Lie algebra of Hol(M) is generated by all elements of the form Ř(v, w) |q∈M .

Zero holonomy group then implies zero curvature; but the converse is
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only true for the restricted holonomy group, as can be seen by considering

e.g. a flat sheet of paper rolled into a cone. However, zero curvature implies

that the holonomy algebra vanishes, which means that the holonomy group

is discrete.

9.3 Introducing lengths and angles

9.3.1 The Riemannian metric

Recall from Section 3.2.4 that a (pseudo) metric tensor is a (pseudo) inner

product 〈v, w〉 on a vector space V that can be represented by a symmetric

tensor gab, and thus can be used to lower and raise indices on tensors. A

(pseudo) Riemannian metric (AKA metric) is a (pseudo) metric tensor

field on a manifold M , making M a (pseudo) Riemannian manifold.

A metric defines the length (norm) of tangent vectors, and can thus be

used to define the length L of a curve C via parametrization and integration:

L(C) ≡
ˆ ∥∥∥Ċ(t)∥∥∥ dt

=

ˆ √〈
Ċ(t), Ċ(t)

〉
dt

This also turns any (non-pseudo) Riemannian manifold into a metric space,

with distance function d(x, y) defined to be the minimum length curve

connecting the two points x and y; this curve is always a geodesic, and

any geodesic locally minimizes the distance between its points (only locally

since e.g. a geodesic may eventually self-intersect as the equator on a sphere

does).

☼ With a metric, our intuitive picture of a manifold loses its “stretchi-

ness” via the introduction of length and angles; but having only intrin-

sically defined properties, the manifold can still be e.g. rolled up like

a piece of paper if imagined as flat and embedded in a larger space.

If the coordinate frame of xμ is orthonormal at a point p ∈ Mn in

a Riemannian manifold, for arbitrary coordinates yμ we can consider the
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components of the metric tensor in the two coordinate frames to find that

gμνdy
μdyν = δλσdx

λdxσ

= δλσ
∂xλ

∂yμ
dyμ

∂xσ

∂yν
dyν

= [Jx(y)]
T
[Jx(y)] dy

μdyν

⇒ det (gμν) = [det (Jx (y))]
2 ,

where Jx(y) is the Jacobian matrix and we have used the fact that

det(ATA) = [det(A)]2. Thus the volume of an region U ∈ Mn corre-

sponding to R ∈ Rn in the coordinates xμ is

V (U) =

ˆ
R

√
det(g)dx1 . . . dxn,

where det(g) is the determinant of the metric tensor as a matrix in the

coordinate frame ∂/∂xμ. In the context of a pseudo-Riemannian mani-

fold det(g) can be negative, and the integrand dV ≡ √|det(g)|dx1 . . . dxn
is called the volume element, or when written as a form dV ≡√|det(g)|dx1 ∧ · · · ∧ dxn it is called the volume form. In physical ap-

plications dV usually denotes the volume pseudo-form, which gives a

positive value regardless of orientation. Note that if the coordinate frame

is orthonormal then |det(g)| = 1; thus these definitions are consistent with

those previously defined. Sometimes one defines a volume form on a man-

ifold without defining a metric; in this case the metric (and connection) is

not uniquely determined.

� The symbol g is frequently used to denote det(g), and sometimes√|det(g)|, in addition to denoting the metric tensor itself.

We can use the inner product to define an orthonormal frame on

M . In four dimensions an orthonormal frame is also called a tetrad (AKA

vierbein). Any frame on a manifold can be defined to be an orthonormal

frame, which is equivalent to defining the metric (which in the orthonormal

frame is gab = ηab). An orthonormal holonomic frame exists on a region

of M if and only if that region is flat. Thus in general, given a set of

coordinates onM , we have to choose between using either a non-coordinate

orthonormal frame or a non-orthonormal coordinate frame.

At a point p ∈ U ⊂ M , an orthonormal basis for TpU can be used to

form geodesic normal coordinates, which are then calledRiemann normal

coordinates. In these coordinates the partial derivatives of the metric
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gab = ηab all vanish at p. TheHopf-Rinow theorem says that a connected

Riemannian manifold M is complete as a metric space (or equivalently, all

closed and bounded subsets are compact) if and only if it is geodesically

complete, meaning that the exponential map is defined for all vectors at

some p ∈ M . If M is geodesically complete at p, then it is at all points

on the manifold, so this property can also be used to state the theorem.

This theorem is not valid for pseudo-Riemannian manifolds; any (pseudo)

Riemannian manifold that is geodesically complete is called a geodesic

manifold.

As noted previously, a Riemannian metric can be defined on any dif-

ferentiable manifold. In general, however, not every manifold admits a

pseudo-Riemannian metric, and in particular not every 4-manifold admits

a Minkowski metric; but 4-manifolds that are noncompact, parallelizable,

or compact, connected and of Euler characteristic 0 all do.

In the same way that differentiable manifolds are equivalent if they are

related by a diffeomorphism, Riemannian manifolds are equivalent if they

are related by an isometry, a diffeomorphism Φ: M → N that preserves

the metric, i.e. ∀v, w ∈ TM , 〈v, w〉 |p = 〈dΦp(v), dΦp(w)〉
∣∣
Φ(p) . Also like

diffeomorphisms, the isometries of a manifold form a group; for example, the

group of isometries of Minkowski space is the Poincaré group. A vector field

whose one-parameter diffeomorphisms are isometries is called a Killing

field, also called a Killing vector since it can be shown (Petersen [2006]

pp. 188-189) that a Killing field is determined by a vector at a single point

along with its covariant derivatives. A Killing field thus satisfies Lvgab =

0, which for a Levi-Civita connection (see next section) is equivalent to

∇avb +∇bva = 0, called the Killing equation (AKA Killing condition).

We can then consider isometric immersions and embeddings, and ask

whether every Riemannian manifold can be embedded in some R
n. The

Nash embedding theorem provides an affirmative answer, and it can

also be shown that every pseudo-Riemanian manifold can be isometrically

embedded in some R
n with some signature while maintaining arbitrary

differentiability of the metric.

9.3.2 The Levi-Civita connection

A connection on a Riemannian manifoldM is called a metric connection

(AKA metric compatible connection, isometric connection) if its associated

parallel transport respects the metric, i.e. it preserves lengths and angles.

More precisely, ∀v, w ∈ TM , we require that 〈‖C (v), ‖C (w)〉 = 〈v, w〉 for
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any curve C in M . This means that the holonomy group is a subgroup of

O(n), or of SO(n) if (and only if) M is orientable.

In terms of the metric, this can be written gab ‖C va ‖C wb = gabv
awb.

Then since ∇c 〈v, w〉 = 0, and recalling that the covariant derivative on

the tensor algebra was defined to respect parallel translation, we also have

for infinitesimal C that ‖C (gabv
awb) =‖C gab ‖C va ‖C wb = gabv

awb, so

that we must have ‖C gab = gab, or ∇cgab = 0. In terms of the connection

coefficients, a metric connection then satisfies

∇cgab = ∂cgab − Γd
acgdb − Γd

bcgad = 0.

Using the Leibniz rule for the covariant derivative over the tensor product,

we can derive a Leibniz rule over the inner product:

∇c

(
gabv

awb
)
= 0 + gab∇cv

awb + gabv
a∇cw

b

⇒ ∇u 〈v, w〉 = 〈∇uv, w〉 + 〈v,∇uw〉
Requiring this relationship to hold is an equivalent way to define a metric

connection.

The Levi-Civita connection (AKA Riemannian connection, Christof-

fel connection) is then the torsion-free metric connection on a (pseudo) Rie-

mannian manifold M . The fundamental theorem of Riemannian ge-

ometry states that for any (pseudo) Riemannian manifold the Levi-Civita

connection exists and is unique. On the other hand, an arbitrary connection

can only be the Levi-Civita connection for some metric if it is torsion-free

and preserves lengths. More precisely, given a simply connected manifold

M with a torsion-free connection, a metric of signature (r, s) compatible

with this connection exists if and only if Hol(M) ⊆ O(r, s); moreover, this

metric is unique only up to a scaling factor (in physics, this corresponds to

a choice of units).

For a metric connection, the curvature then must take values that are

infinitesimal rotations, i.e. Ř is o(r, s)-valued. Thus if we eliminate the

influence of the signature by lowering the first index, the first two indices

of the curvature tensor are anti-symmetric:

Rcdab = −Rdcab

Using the anti-symmetry of the other indices and the first Bianchi identity,

this leads to another commonly noted symmetry

Rcdab = Rabcd.
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The Leibniz rule for the covariant derivative over the inner product can

be used to derive an expression called the Koszul formula:

2 〈∇uv, w〉 =∇u 〈v, w〉 +∇v 〈w, u〉 − ∇w 〈u, v〉
− 〈u, [v, w]〉+ 〈v, [w, u]〉+ 〈w, [u, v]〉

Substituting in the frame vector fields and eliminating the metric tensor

from the left hand side, we arrive at an expression for the connection in

terms of the metric:

2Γc
ba = gcd(∂agbd + ∂bgda − ∂dgab

− gaf [eb, ed]f + gbf [ed, ea]
f + gdf [ea, eb]

f )

On a Riemannian manifold, the connection coefficients for the Levi-

Civita connection in a coordinate basis Γλ
μσ are called the Christoffel

symbols. Thus the Christoffel symbols are determined by the partial

derivatives of the metric, which means that the Christoffel symbols van-

ish at the origin of Riemann normal coordinates.

☼ The vanishing of the Christoffel symbols at the origin of Riemann

normal coordinates is frequently used to simplify the derivation of ten-

sor relations which are then, being frame-independent, seen to be true

in any coordinate system or frame (and if the origin was chosen arbi-

trarily, at any point). In particular, the covariant and partial deriva-

tives are equivalent at the origin of Riemann normal coordinates.

9.3.3 Independent quantities and dependencies

While in general the curvature on a Riemannian manifold does not deter-

mine the metric, for a manifold with connection that is compact, simply

connected, and has no regions of constant curvature (i.e. there is no way to

“stretch” the manifold without affecting the curvature), knowledge of the

curvature at all points determines the connection (up to changes in frame),

and therefore the metric that makes this connection Levi-Civita (up to a

constant scaling factor).

If we choose coordinate charts and use coordinate frames on Mn, we

can calculate the number of independent functions and equations associated

with the various quantities and relations we have covered, and use them to

verify the associated dependencies.
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Table 9.3.1 Independent function and equation counts in a coordinate frame.

Quantity / relation Viewpoint Count

Metric Symmetric matrix of functions n(n+ 1)/2

Coordinate frame Fixed 0

Connection gl(n,R)-valued 1-form n3

Metric condition Derivative of metric n2(n+ 1)/2

Torsion-free condition Rn-valued 2-form n2(n− 1)/2

The choice of coordinates determines the frame, leaving the geometry

of the Riemannian manifold defined by the n(n + 1)/2 functions of the

metric. A torsion-free connection consists of n3 − n2(n − 1)/2 = n2(n +

1)/2 functions. The metric condition is exactly this number of equations,

allowing us in general to solve for the connection if the metric is known, or

vice-versa (up to a constant scaling factor).

Alternatively, we can look at things in a orthonormal frame:

Table 9.3.2 Independent function and equation counts in an orthonormal frame.

Quantity / relation Viewpoint Count

Metric Fixed 0

Orthonormal frame n vector fields n2

Change of orthonormal frame SO(n)-valued 0-form n(n− 1)/2

Connection so(n)-valued 1-form n2(n− 1)/2

Metric condition Automatically satisfied 0

Torsion-free condition Rn-valued 2-form n2(n− 1)/2

Here the metric is constant, and the orthonormal frame consists of n2

functions, but it is determined only up to a change of orthonormal frame

(rotation), leaving n2 − n(n− 1)/2 = n(n+1)/2 functions, consistent with

the metric function count above. The torsion-free condition is the same

number of equations as the connection has functions, so that in general the

torsion-free connection can be determined by the orthonormal frame.

9.3.4 The divergence and conserved quantities

Recall from Section 6.3.5 that the divergence of a vector field u can be gen-

eralized to a pseudo-Riemannian manifold (sometimes called the covari-

ant divergence) by defining div(u) ≡ ∗d(∗(u�)). Using the previously
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stated relations iuΩ = ∗(u�) and A = (∗A)Ω for A ∈ ΛnMn, we have

d(iuΩ) = d(∗(u�)) = ∗d(∗(u�))Ω = div(u)Ω. Using iud + diu = Lu we then

arrive at div(u)Ω = LuΩ, or as it is more commonly written

div(u)dV = LudV.

Thus we can say that div(u) is “the fraction by which a unit volume changes

when transported by the flow of u,” and if div(u) = 0 then we can say that

“the flow of u leaves volumes unchanged.” Expanding the volume element

in coordinates xλ we can obtain an expression for the divergence in terms

of these coordinates,

div(u) =
1√|det(g)|∂λ

(
uλ

√
|det(g)|

)
.

Note that both this expression and ∇au
a are coordinate-independent and

equal to ∂au
a in Riemann normal coordinates, confirming our expectation

that in general we have

div(u) = ∇au
a.

Using the relation div(u)Ω = d(iuΩ) above, along with Stokes’ theorem,

we recover the classical divergence theoremˆ
V

div(u)dV =

ˆ
∂V

iudV

=

ˆ
∂V

〈u, n̂〉 dS,

where V is an n-dimensional compact submanifold of Mn, n̂ is the unit

normal vector to ∂V , and dS ≡ in̂dV is the induced volume element (“sur-

face element”) for ∂V . In the case of a Riemannian metric, this can be

thought of as reflecting the intuitive fact that “the change in a volume due

to the flow of u is equal to the net flow across that volume’s boundary.”

If div(u) = 0 then we can say that “the net flow of u across the boundary

of a volume is zero.” We can also consider an infinitesimal V , so that the

divergence at a point measures “the net flow of u across the boundary of

an infinitesimal volume.” As usual, for a pseudo-Riemannian metric these

geometric intuitions have less meaning.

The divergence can be extended to contravariant tensors T by defining

div(T ) ≡ ∇aT
ab, although other conventions are in use. Since div(T ) is

vector-valued and the parallel transport of vectors is path-dependent, we

cannot in general integrate to get a divergence theorem for tensors. In the
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case of a flat metric however, we are able to integrate to get a divergence

theorem for each componentˆ
V

∇aT
abdV =

ˆ
∂V

Ta
bn̂adS.

In physics, the vector field u often represents the current vector (AKA

current density, flux, flux density) j ≡ ρu of an actual physical flow, where

ρ is the density of the physical quantity Q and u is thus a velocity field;

e.g. in R
3, j has units Q/(length)2(time). There are several quantities that

can be defined around this concept:

Table 9.3.3 Quantities related to current.

Quantity Definition Meaning

Current vector j ≡ ρu

The vector whose length is

the amount of Q per unit

time crossing a unit area

perpendicular to j

Current form
ζ ≡ ijdV

= 〈j, n̂〉 dS

The (n− 1)-form which

gives the amount of Q per

unit time crossing the area

defined by the argument

vectors

Current density
j ≡

√
|det(g)| j

⇒ ζ = 〈j, n̂〉dxλ1 ∧ · · · ∧ dxλn−1

The vector whose length is

the amount of Q per unit

time crossing a unit

coordinate area

perpendicular to j

Current

I ≡
ˆ
S
ζ

=

ˆ
S
〈j, n̂〉dS

=

ˆ
S(xλ)

〈j, n̂〉dxλ1 · · ·dxλn−1

The amount of Q per unit

time crossing S

Current 4-vector J ≡ (ρ, jμ)
Current vector on the

spacetime manifold

Notes: ρ is the density of the physical quantity Q, u is a velocity field, n̂ is

the unit normal to a surface S, and xλ are coordinates on the submanifold

S. The current 4-vector can be generalized to other Lorentzian manifolds,

and can also be turned into a form or a density.
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� Note that the terms flux and current (as well as flux density and

current density) are not used consistently in the literature.

The current density j is an example of a tensor density, which in

general takes the form T ≡
(√|det(g)|)W

T , where T is a tensor and

W is called the weight. Note that tensor densities are not coordinate-

independent quantities.

For a Riemannian metric we now define the continuity equation

(AKA equation of continuity)

dq

dt
= Σ−

ˆ
∂V

〈j, n̂〉dS,
where q is the amount of Q contained in V , t is time, and Σ is the rate of Q

being created within V . The continuity equation thus states the intuitive

fact that the change of Q within V equals the amount generated less the

amount which passes through ∂V . Using the divergence theorem, we can

then obtain the differential form of the continuity equation

∂ρ

∂t
= σ − div(j),

where σ is the amount of Q generated per unit volume per unit time.

This equation then states the intuitive fact that at a point, the change in

density of Q equals the amount generated less the amount that moves away.

Positive σ is referred to as a source of Q, and negative σ a sink. If σ = 0

then we say that Q is a conserved quantity and refer to the continuity

equation as a (local) conservation law.

Under a flat Lorentzian metric, we can combine ρ and j into the current

4-vector J and express the continuity equation with σ = 0 as

div(J) = 0,

whereupon J is called a conserved current. Note that in this approach

we lose the intuitive meaning of the divergence under a Riemannian metric.

If any curvature is present, when we split out the time component we re-

cover a Riemannian divergence but introduce a source due to the non-zero

Christoffel symbols

∇μJ
μ = ∂μJ

μ + Γμ
νμJ

ν

= ∂tρ+∇ij
i +

(
Γμ

tμρ+ Γt
itj

i
)
,

where t is the negative signature component and the index i goes over

the remaining positive signature components. Thus, since the Christoffel
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symbols are coordinate-dependent, in the presence of curvature there is

in general no coordinate-independent conserved quantity associated with a

vanishing Lorentzian divergence.

Several methodologies can be used to derive conserved quantities and

currents from an expression that in some way describes a physical system

(and is often call simply “the system”); in particular, Noether’s theo-

rem derives conserved currents from transformations (“symmetries”) on

the variables of an expression called the action that leave it unchanged.

9.3.5 Ricci and sectional curvature

The Ricci curvature tensor (AKA Ricci tensor) is formed by contracting

two indices in the Riemann curvature tensor:

Rab ≡ Rc
acb

Ric(v, w) ≡ Rabv
awb

Using the symmetries of the Riemann tensor for a metric connection along

with the first Bianchi identity for zero torsion, it is easily shown that the

Ricci tensor is symmetric. A pseudo-Riemannian manifold is said to have

constant Ricci curvature, or to be an Einstein manifold, if the Ricci

tensor is a constant multiple of the metric tensor.

Since the Ricci tensor is symmetric, by the spectral theorem it can be

diagonalized and thus is determined by

Ric(v) ≡ Ric(v, v),

which is called the Ricci curvature function (AKA Ricci function). Note

that the Ricci function is not a 1-form since it is not linear in v. Choosing a

basis that diagonalizesRab is equivalent to choosing our basis vectors to line

up with the directions that yield extremal values of the Ricci function on

the unit vectors Ric(v̂, v̂) (or equivalently, the principal axes of the ellipsoid

/ hyperboloid Ric(v, v) = 1).

Finally, if we raise one of the indices of the Ricci tensor and contract

we arrive at the Ricci scalar (AKA scalar curvature):

R ≡ gabRab

For a Riemannian manifold Mn, the Ricci scalar can thus be viewed as n

times the average of the Ricci function on the set of unit tangent vectors.
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� The Ricci function and Ricci scalar are sometimes defined as averages

instead of contractions (sums), introducing extra factors in terms of the

dimension n to the above definitions.

The Ricci function in terms of the curvature 2-form in an orthonormal

frame eμ (dropping the hats to avoid clutter) on a pseudo-Riemannian

manifoldMn naturally splits into terms which each also measure curvature:

Ric(eμ) =
∑
i�=μ

gii
〈
Ř(ei, eμ)	eμ, ei

〉
The term i = μ vanishes due to the anti-symmetry of Ř. The (n − 1)

non-zero terms are each called a sectional curvature, which in general is

defined as

K(v, w) ≡
〈
Ř(v, w)	w, v

〉
〈v, v〉 〈w,w〉 − 〈v, w〉2

⇒ K(ei, ej) = giigjj
〈
Ř(ei, ej)	ej , ei

〉
⇒ Ric(eμ) =

∑
i�=μ

gμμK(ei, eμ)

⇒ R =
∑
j

gjjRic(ej)

=
∑
i�=j

K(ei, ej)

= 2
∑
i<j

K(ei, ej).

Note that the sectional curvature is not a 2-form since it is not linear in its

arguments; in fact it is constructed to only depend on the plane defined by

them, and therefore is symmetric and vanishes for equal arguments. Thus

for a Riemannian manifold, the Ricci function of a unit vector Ric(v̂) can

be viewed as (n − 1) times the average of the sectional curvatures of the

planes that include v̂, and the Ricci scalar can be viewed as n times the

average of all the Ricci functions. For a pseudo-Riemannian manifold, the

Ricci scalar is twice the sum of all sectional curvatures, or n(n−1) times the

average of all sectional curvatures, whose count is the binomial coefficient

n choose 2 or n(n− 1)/2.

The Cartan-Hadamard theorem states that the universal covering

space of a complete Riemannian manifold Mn with non-positive sectional

curvature is diffeomorphic to Rn. ForMn complete with constant sectional
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curvature K (sometimes called a space form), its universal covering space

is isometric to Rn if K = 0, Sn if K = 1, and Hn if K = −1, where Hn is

called the (real) hyperbolic space and we can generalize by noting that

scaling the metric inversely scales K. There are different ways to define

Hn concretely, one being the region of Rn with x0 > 0 and metric δμν/x
2
0,

another being the set of points with x0 > 0 and 〈x, x〉 = −1 in Mn+1 with

a Lorentzian metric.

The sectional curvatures completely determine the Riemann tensor, but

in general the Ricci tensor alone does not for manifolds of dimension greater

than 3. However, the Riemann tensor is determined by the Ricci tensor

together with the Weyl curvature tensor (AKA Weyl tensor, conformal

tensor), whose definition (not reproduced here) removes all contractions of

the Riemann tensor, so that it is the “trace-free part of the curvature” (i.e.

all of its contractions vanish). The Weyl tensor is only defined and non-zero

for dimensions n > 3.

The Einstein tensor is defined as

G(v, w) ≡ Ric(v, w) − R

2
g(v, w)

Gab = Rab − R

2
gab.

If we define G ≡ gabGab then we find that Rab = Gab−Ggab/(n−2), so that

the Einstein tensor vanishes iff the Ricci tensor does. Now, the Einstein

tensor is symmetric, and by the spectral theorem can be diagonalized at

a given point in an orthonormal basis, which also diagonalizes the Ricci

tensor. In terms of the sectional curvature, we have

G(eμ, eμ) = −
∑
i<j
i,j �=μ

K(ei, ej).

Thus for a Riemannian manifold, the Einstein tensor G(v̂, v̂) applied to a

unit vector twice can be viewed as −(n − 1)(n − 2)/2 times the average

of the sectional curvatures of the planes orthogonal to v̂. For an Einstein

manifold, Rab = kgab, so that R = nk and thus the Einstein tensor Gab =

(1 − n/2)kgab is also proportional to the metric tensor. Using the second

Bianchi identity it can be shown (Frankel [1979] pp. 80-81) that the Einstein

tensor is also “divergenceless,” i.e.

∇aG
ab = 0.

Recall that unless the metric is flat, there is no conserved quantity which

can be associated with this vanishing divergence.
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� Frequent references to the divergencelessness of the Einstein tensor

being related to a conserved quantity usually refer to some kind of

particular context; one simple one is that in the limit of zero curvature,

there is a set of conserved quantities due to the above equation.

9.3.6 Curvature and geodesics

Geometrically, the Ricci function Ric(v) at a point p ∈Mn can be seen to

measure the extent to which the area defined by the geodesics emanating

from the (n − 1)-surface perpendicular to v changes in the direction of v.

Considering the three dimensional case in an orthonormal frame (and again

dropping the hats in êi to avoid clutter), we have

Ric(e2) =
〈
Ř(e1, e2)	e2, e1

〉
+

〈
Ř(e3, e2)	e2, e3

〉
= K(e1, e2) +K(e3, e2).

If we form a cube made from parallel transported vectors as we did for

the first Bianchi identity, we can see that each sectional curvature term in

Ric(e2) takes an edge of the cube and measures the length of the difference

between the cube-aligned component of its parallel transport in the e2 di-

rection and the edge of the cube at a point parallel transported in the e2
direction.
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Figure 9.3.1 Each sectional curvature measures the convergence of geodesics,
while their sum forms the Ricci curvature function, which measures the change in
the area of the (n−1)-surface formed by geodesics perpendicular to its argument.
In the figure we assume without loss of generality (see below) that Ř(e1, e2)�e2 is
parallel to e1.

The figure above details the sectional curvature K(e1, e2) =

β1Ř(e1, e2)	e2 assuming that Ř(e1, e2)	e2 is parallel to e1, so that〈
Ř(e1, e2)	e2, e1

〉
=

∥∥Ř(e1, e2)	e2∥∥. The parallel transport of e2 along it-

self is depicted as parallel, so that the geodesic parametrized by arclength

φ(t) is a straight line in the figure. The vector ‖δe2‖εe1 δe2 is the parallel

transport of ‖εe1 δe2 by δ in the direction parallel to e2, and therefore the

geodesic φε(t) tangent to ‖εe1 δe2 at q has tangent ‖δe2‖εe1 δe2 after moving

a distance δ. If we consider the function f(t) whose value at t = δ is the

quantity (L− ε) in the figure (i.e. f(t) measures the offset of the geodesic

from the right edge of the stack of parallel cubes), its derivative is the slope
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of the tangent, so that to lowest order in t we have

ḟ(t) = −εt2K(e1, e2)/t

= −εtK(e1, e2)

⇒ f(t) = −εt2K(e1, e2)/2.

We can generalize this logic to arbitrary unit vectors v̂ and ŵ to conclude

that K(v̂, ŵ)/2 is the “fraction by which the geodesic parallel to ŵ starting

v̂ away bends towards ŵ.” More precisely, in terms of the distance function

and the exponential map, to order ε and δ2 we have

d (exp(δŵ), exp(δ ‖εv̂ ŵ)) = ε

(
1− δ2

2
K(v̂, ŵ)

)
.

In the general case L in the figure is the distance between two geodesics

infinitesimally separated in the v̂ direction, so if we define L(t) as this

distance at any point along the parametrized geodesic tangent to ŵ, the

above becomes

L(t) = L(0)

(
1− t2

2
K(v̂, ŵ)

)
⇒ L̈(t)

L(t)
= −K(v̂, ŵ),

where the double dots indicate the second derivative with respect to t. Thus

K(v̂, ŵ) is “the acceleration of two parallel geodesics in the ŵ direction with

initial separation v̂ towards each other as a fraction of the initial gap.”

Now, the distance |ε− L| = εδ2K(e1, e2)/2 defines a strip S bordering

the surface orthogonal to e2 a distance δ in the e2 direction. This strip thus

has an area ε2δ2K(e1, e2)/2. If we sum this with the other strip of area

ε2δ2K(e3, e2)/2, to order ε2 and δ2 we measure the extent to which the

area A defined by the geodesics emanating from the surface perpendicular

to e2 changes in the direction of e2. But the sum of sectional curvatures

is just the Ricci function, so that in general Ric(v)/2 is the “fraction by

which the area defined by the geodesics emanating from the (n−1)-surface

perpendicular to v changes in the direction of v.” More precisely, we can

follow the same logic as above, defining the “infinitesimal geodesic (n− 1)-

area” A(t) along a parametrized geodesic tangent to v, so that to order ε2

and t2 we have

A(t) = ε2
(
1− t2

2
Ric(v)

)
⇒ Ä(t)

A(t)
= −Ric(v).
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Thus Ric(v) is “the acceleration of the parallel geodesics emanating from

the (n−1)-surface perpendicular to v towards each other as a fraction of the

initial surface.” Note that when summing the sectional curvatures to get

the Ricci function, we see that our previous assumption that Ř(e1, e2)	e2 is

parallel to e1 does not affect our geometric interpretation, since the effect

of any component perpendicular to e1 is covered in the area calculation

due to the other sectional curvatures. In the case of a pseudo-Riemannian

manifold, “areas” and “volumes” become less geometric concepts; however,

we have a clear picture in the case of a Lorentzian manifold that the Ricci

function applied to a time-like vector v ≡ ∂/∂x0 = ∂/∂t tells us how

the infinitesimal space-like volume V of free-falling particles (i.e. following

geodesics) changes over time according to V̈ /V = −Ric(v) = −R00 =

−Rμ
0μ0.

9.3.7 Jacobi fields and volumes

Now let us consider a vector field J(t) along the geodesic φ(t) such that

J(0) ≡ J |p = J
∣∣
φ(0) = e1 and J(δ) ≡ J

∣∣
φ(δ) = (L/ε) ‖δe2 e1, i.e. J is the

vector field “between adjacent geodesics.”
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Figure 9.3.2 A Jacobi field is the vector field between adjacent geodesics, whose
construction creates a relationship between the covariant derivative and the sec-
tional curvature.

Then the function f(t) = −εt2K(e1, e2)/2 = −εt2K(J, φ̇)/2 is the dif-

ference between J and its parallel transport in the direction tangent to φ,

i.e. it is the value of the covariant derivative along φ. Since this difference

is of order t2, at t = 0 we have D2
tJ = −K(J, φ̇), or as it is more commonly

written
D2J

dt2
+ Ř(J, φ̇)

	̇
φ = 0.

Considered as an equation for all J(t), this is called the Jacobi equation,

with the vector field J(t) that satisfies it called a Jacobi field. A more

precise way to generalize our construction of J is to define a one-parameter

family of geodesics φs(t), so that

J(t) =
∂φs(t)

∂s

∣∣∣∣
s=0

.

If M is complete then every Jacobi field can be expressed in this way for

some family of geodesics.
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If we then consider the Jacobi fields Jv(t) corresponding to the geodesics

φv(t) of tangent vectors ‖v‖ = 1 parametrized by arclength and such that

to order t we have ‖Jv(1)‖ = 1, it can be shown (do Carmo [1992] pp.

114-115) that to order t3 we have ‖Jv(t)‖ = t(1− t2K(Jv, φ̇v)/6).
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Figure 9.3.3 The infinitesimal geodesic area element derived from the Jacobi
field between radial geodesics.

This means that if we apply the previous reasoning for parallel geodesics

to these radial geodesics we have an “infinitesimal geodesic (n − 1)-area

element” A(t) = t2(1 − t2Ric(v)/6). Integrating this over all values of v

gives for small t = ε the surface area of a geodesic n-ball of radius ε, which

we denote ∂Bε(M
n). But this integral just averages the values of the Ricci

function, which is the Ricci scalar over the dimension n, so that to order

ε2 we have

∂Bε(M
n)

∂Bε(Rn)
= 1− ε2

6n
R,

and integrating over the radius we find (see A. Gray [1974]) a similar re-

lation for the volume of a geodesic sphere compared to a Euclidean one

of

Bε(M
n)

Bε(Rn)
= 1− ε2

6(n+ 2)
R.

Thus ε2R/6n is “the fraction by which the surface area of a geodesic n-ball

of radius ε is smaller than it would be under a flat metric,” and ε2R/6(n+2)

is “the fraction by which the volume of a geodesic n-ball of radius ε is smaller

than it would be under a flat metric.”
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Alternatively, we can use Riemann normal coordinates to express v in

our “infinitesimal geodesic (n−1)-area element,” whereupon following sim-

ilar logic to the above we find that, at points close to the origin of our

coordinates, to order ‖x‖2 the volume element is

dV =

(
1− 1

6
Rμνx

μxν
)
dx1 · · · dxn,

or using the expression of the volume element in terms the square root of

the determinant of the metric, again to order ‖x‖2 we find that

gμν = δμν − 1

3
Rμλνσx

λxσ.

As is apparent from their definitions, the Ricci tensor and function do

not depend on the metric. We can attempt to find a metric-free geometric

interpretation by considering the concept of a parallel volume form. This

is defined as a volume form which is invariant under parallel translation.

We immediately see that it is only possible to define such a form if parallel

translation around a loop does not alter volumes, i.e. that Ř must be

o(r, s)-valued. This means that the connection is metric compatible, so we

can define one if we wish; but if we do not, and assume zero torsion so

that the Ricci tensor is symmetric, then our logic for volumes remains valid

and we can still take a metric-free view of the expression for dV above as

expressing the geodesic volume as measured by the parallel volume form.

Note that unlike the Ricci tensor and function, the definitions here of the

individual sectional curvatures and scalar curvature do depend upon the

metric.

9.3.8 Summary

Below, we review the intuitive meanings of the various relations we have

defined on a Riemannian manifold.
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Table 9.3.4 Divergence and continuity relations and their intuitive meanings.

Relation Meaning

div(u)dV = LudV
div(u) is the fraction by which a unit volume

changes when transported by the flow of u.
ˆ
V
div(u)dV =

ˆ
∂V

iudV

=

ˆ
∂V

〈u, n̂〉dS

The change in a volume due to transport by the

flow of u is equal to the net flow of u across that

volume’s boundary.

div(u) = 0

u having zero divergence means the flow of u

leaves volumes unchanged, or the net flow of u

across the boundary of a volume is zero.

j ≡ ρu, ρ is the density of Q

The current vector j is the vector whose length is

the amount of Q per unit time crossing a unit area

perpendicular to j

dq

dt
= Σ−

ˆ
∂V

〈j, n̂〉dS
The change in q (the amount of Q within V )

equals the amount generated less the amount

which passes through ∂V .

∂ρ

∂t
= σ − div(j)

The change in the density of Q at a point equals

the amount generated less the amount that moves

away.
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Table 9.3.5 Relations defined on a Riemannian manifold Mn and their intuitive
meanings.

Relation Meaning

R ≡ gabRab

The Ricci scalar is n times the average of the

Ricci function on the set of unit tangent vectors.

Ric(eμ) =
∑
i�=μ

gμμK(ei, eμ)

The Ricci function of a unit vector is (n− 1)

times the average of the sectional curvatures of

the planes that include the vector.

R =
∑
j
gjjRic(ej)

The Ricci scalar is n times the average of all the

Ricci functions.

R = 2
∑
i<j

K(ei, ej)
The Ricci scalar is n(n− 1) times the average of

all sectional curvatures.

G(eμ, eμ) = −
∑
i<j

i,j �=μ

K(ei, ej)

The Einstein tensor applied to a unit vector

twice is −(n− 1)(n − 2)/2 times the average of

the sectional curvatures of the planes orthogonal

to the vector.

d (exp(δŵ), exp(δ ‖εv̂ ŵ))

= ε

(
1− δ2

2
K(v̂, ŵ)

) K(v̂, ŵ)/2 is the fraction by which the geodesic

parallel to ŵ starting v̂ away bends towards ŵ.

L̈(t) = −L(t)K(v̂, ŵ)

K(v̂, ŵ) is the acceleration of two parallel

geodesics in the ŵ direction with initial

separation v̂ towards each other as a fraction of

the initial gap.

Ä(t) = −A(t)Ric(v)

Ric(v)/2 is the fraction by which the area
defined by the geodesics emanating from the
(n− 1)-surface perpendicular to v changes in the
direction of v.

Ric(v) is the acceleration of the parallel

geodesics emanating from the (n− 1)-surface

perpendicular to v towards each other as a

fraction of the initial surface.

∂Bε(Mn)

∂Bε(Rn)
= 1− ε2

6n
R

ε2R/6n is the fraction by which the surface area

of a geodesic n-ball of radius ε is smaller than it

would be under a flat metric.

Bε(Mn)

Bε(Rn)
= 1− ε2

6(n + 2)
R

ε2R/6(n + 2) is the fraction by which the

volume of a geodesic n-ball of radius ε is smaller

than it would be under a flat metric.
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9.3.9 Related constructions and facts

A diffeomorphism that preserves angles but not lengths is called a con-

formal map (AKA conformal transformation); more precisely, a con-

formal map is a diffeomorphism Φ: M → N such that ∀v, w ∈ TM ,

〈dΦp(v), dΦp(w)〉
∣∣
Φ(p) = λ2(p) 〈v, w〉 |p , where the positive real function

λ2(p) is called the conformal factor. In two dimensions, the Riemann

mapping theorem states that any non-empty simply connected open

proper subset of R2 can be conformally mapped to the open unit disk, a

result that is not true in higher dimensions. The Weyl tensor is sometimes

called the conformal tensor since it remains invariant under conformal

mappings.

☼ Conformal maps appear in many contexts in both mathematics and

physics, and can be intuitively viewed as maps which take circles to

circles, although the circles may change in size. For example, the Mer-

cator projection often used for world maps is conformal, preserving

angles but distorting areas. In fact, a conformal map which preserves

areas is just an isometry.

Instead of a metric, a symplectic manifoldM is equipped with a sym-

plectic form J (a non-degenerate 2-form) that is closed (dJ = 0). Symplec-

tic manifolds arise in classical mechanics, where the points of the manifold

represent the phase space of the system; this means the coordinates come

in position-momentum pairs, making the dimension of the manifold even

and permitting the definition of a symplectic form.

A Hermitian manifold is the complex version of a Riemannian man-

ifold, a complex manifold with a (smooth) metric tensor field h, called a

Hermitian metric (we will not go into the details of defining vectors on

complex manifolds here). If we consider M as a real manifold, this metric

allows us to define both a Riemannian metric g ≡ (h+ h∗)/2, the real part

of h, and a symplectic form J ≡ i(h − h∗)/2, the negative of the imagi-

nary part of h. J is called the Hermitian form (overloading the term

from Section 2.2.1, which can be applied to the Hermitian metric itself at a

point). If J is closed, then M is called a Kähler manifold (which is also

then a symplectic manifold), and J is called the Kähler metric. There

are several ways of defining a Kähler manifold that is “orientable,” which

is then called a Calabi-Yau manifold.
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Fiber bundles

A manifold includes a tangent space associated with each point. A frame

defines a basis for the tangent space at each point, and a connection allows

us to compare vectors at different points, leading to concepts including the

covariant derivative and curvature. All of these concepts can be applied to

an arbitrary vector space associated with each point in place of the tangent

space. This is the idea behind gauge theories. Both manifolds with con-

nection and gauge theories can then be described using the mathematical

language of fiber bundles.

10.1 Gauge theory

10.1.1 Matter fields and gauges

Gauge theories associate each point x on the spacetime manifold M with

a (usually complex) vector space Vx ∼= Cn, called the internal space. A

V -valued 0-form 	Φ on M is called a matter field. A matter field lets us

define analogs of the quantities from Section 9.1, as follows.

A basis for each Vx is called a gauge, and is the analog of a frame;

choosing a gauge is sometimes called gauge fixing. Like the frame, a gauge

is generally considered on a region U ⊆M . The analog of a change of frame

is then a (local) gauge transformation (AKA gauge transformation of

the second kind), a change of basis for each Vx at each point x ∈ U . This

is viewed as a representation of a gauge group (AKA symmetry group,

structure group) G acting on V at each point x ∈ U , so that we have

γ−1 : U → G

ρ : G→ GL(V )

⇒ γ̌−1 ≡ ργ−1 : U → GL(V ),

217
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and if we choose a gauge it can thus be associated with a matrix-valued

0-form or tensor field

(γ−1)βα : U → GL(n,C),

so that the components of the matter field Φα transform according to

Φ′β = γβαΦ
α.

Recalling from Section 7.5.1 that all reps of a compact G are similar to a

unitary rep, for compact G we can then choose a unitary gauge, which is

defined to make gauge transformations unitary, so γ̌−1 : U → U(n); this is

the analog of choosing an orthonormal frame, where a change of orthonor-

mal frame then consists of a rotation at each point. A global gauge

transformation (AKA gauge transformation of the first kind) is a gauge

transformation that is the same at every point. If the gauge group is non-

abelian (i.e. most groups considered beyond U(1)), the matter field is called

a Yang-Mills field (AKA YM field).

� The term “gauge group” can refer to the abstract group G, the

matrix rep of this group within GL(V ), the matrix rep within U(n)

under a unitary gauge, or the infinite-dimensional group of maps γ−1

under composition.

� As with vector fields, the matter field 	Φ is considered to be an

intrinsic object, with only the components Φα changing under gauge

transformations.

� Unlike with the frame, whose global existence is determined by the

topology of M , there can be a choice as to whether a global gauge

exists or not. This is the essence of fiber bundles, as we will see in the

next section.

10.1.2 The gauge potential and field strength

We can then define the parallel transporter for matter fields to be a lin-

ear map ‖C : Vp → Vq, where C is a curve in M from p to q. Choosing a
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gauge, the parallel transporter can be viewed as a (gauge-dependent) map

‖β α : {C} → GL(n,C). This determines the (gauge-dependent) matter

field connection 1-form Γβ
α (v) : TxM → gl(n,C), which can also be writ-

ten when acting on a Cn-valued 0-form as Γ̌ (v) 	Φ. The values of the parallel

transporter are again viewed as a rep of the gauge group G, so that the

values of the connection are a rep of the Lie algebra g, and if G is compact

we can choose a unitary gauge so that g is represented by anti-hermitian

matrices. We then define the gauge potential (AKA gauge field, vector

potential) Ǎ by

Γ̌ ≡ −iqǍ,
where q is called the coupling constant (AKA charge, interaction con-

stant, gauge coupling parameter). Note that Aβ
α are then hermitian ma-

trices in a unitary gauge. The covariant derivative is then

∇vΦ = d	Φ (v)− iqǍ (v) 	Φ,

which can be generalized to C
n-valued k-forms in terms of the exterior

covariant derivative as

D	Φ = d	Φ− iqǍ ∧ 	Φ.
For a matter field (0-form), this is often written after being applied to eμ
as

Dμ
	Φ = ∂μ	Φ− iqǍμ

	Φ,

where μ is then a spacetime index and Ǎμ ≡ Ǎ(eμ) are gl(n,C)-valued

components.

This connection defines a curvature Ř ≡ dΓ̌+Γ̌∧ Γ̌, which lets us define

the field strength (AKA gauge field) F̌ by

Ř ≡ −iqF̌
⇒ F̌ = dǍ− iqǍ ∧ Ǎ.

10.1.3 Spinor fields

A matter field can also transform as a spinor, in which case it is called

a spinor matter field (AKA spinor field), and is a 0-form on M which

e.g. for Dirac spinors takes values in V ⊗ C
4. The gauge component then

responds to gauge transformations, while the spinor component responds

to changes of frame. Similarly, a matter field on M r+s taking values in

V ⊗ Rr+s is called a vector matter field (AKA vector field), where the
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vector component responds to changes of frame. Finally, a matter field

without any frame-dependent component is called a scalar matter field

(AKA scalar field), and a matter field taking values in C (which can be

viewed as either vectors or scalars) is called a complex scalar matter

field (AKA complex scalar field, scalar field). A spinor matter field with

gauge group U(1) is called a charged spinor field.

� It is important remember that spinor and vector matter fields use

the tensor product, not the direct sum, and therefore cannot be treated

as two independent fields. In particular, the field value φ⊗ψ ∈ V ⊗C
4

is identical to the value −φ ⊗ −ψ, which has consequences regarding

the existence of global spinor fields, as we will see in Section 10.4.7.

In order to directly map changes of frame to spinor field transformations,

one must use an orthonormal frame so all changes of frame are rotations.

The connection associated with an orthonormal frame is therefore called

a spin connection, and takes values in so(3, 1) ∼= spin(3, 1). Thus the

spin connection and gauge potential together provide the overall transfor-

mation of a spinor field under parallel translation. All of the above can be

generalized to arbitrary dimension and signature.

Table 10.1.1 Constructs as applied to the various spaces associated with a point
p ∈M in spacetime and a vector v at p.

Tangent space

TpM = R(r+s)

Spinor space

Sp = Km

Internal space

Vp = Cn

Frame Standard basis of Km identified with

an initial orthonormal frame on M

Gauge

Change of frame Up ∈ Spin(r, s) asssociated with

change of orthonormal frame γ̌p

Gauge

transformation

Vector field

p �→ w ∈ TpM

Spinor field

p �→ ψ ∈ Sp

Complex / YM field

p �→ φ ∈ Vp

Connection

v �→ Γ̌ (v) ∈ gl(r, s)

Spin connection

v �→ ω̌ (v) ∈ so(r, s), the bivectors

Gauge potential

v �→ Ǎ (v) ∈ gl(n,C)

Curvature

Ř = dΓ̌ + Γ̌ ∧ Γ̌

Curvature

Ř = dω̌ + ω̌ ∧ ω̌
Field strength

F̌ = dǍ− iqǍ ∧ Ǎ
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Figure 10.1.1 A matter field can be the tensor product of a complex scalar or Yang-Mills field φ and a spinor field ψ. YM
fields use a connection and gauge (frame) which are independent of the spacetime manifold frame, while spinor fields mirror
the connection and changes in frame of the spacetime manifold. YM fields are acted on by reps of the gauge group and
its Lie algebra, while spinor fields are acted on by reps of the Spin group and its Lie algebra. In the figure we assume an
infinitesimal curve C with tangent v, an orthonormal frame, a spin connection, and a unitary gauge.
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� Note that a Lorentz transformation on all of flat Minkowski space,

which is the setting for many treatments of this material, induces a

change of coordinate frame that is the same Lorentz transformation on

every tangent space, thus simplifying the above picture by eliminating

the need to consider parallel transport on the curved spacetimemanifold.

� The spinor space is an internal space, but its changes of frame are

driven by those of the spacetime manifold. The question of whether a

global change of orthonormal frame can be mapped to globally defined

elements in Spin(r, s) across coordinate charts in a consistent way is

resolved below in terms of fiber bundles.

10.2 Defining bundles

When introducing tangent spaces on a manifold Mn in Section 6.1.2, we

defined the tangent bundle to be the set of tangent spaces at every point

within the region of a coordinate chart U → R
n, i.e. it was defined as the

cartesian product U×R
n. Globally, we had to use an atlas of charts covering

M , with coordinate transformations Rn → R
n defining how to consider a

vector field across charts. We now want to take the same approach to define

the global version of the tangent bundle, with analogs for frames and internal

spaces.

10.2.1 Fiber bundles

In defining fiber bundles we first consider a base space M and a bundle

space (AKA total space, entire space) E, which includes a surjective bun-

dle projection (AKA bundle submersion, projection map) π : E → M .

In the special case that M and F are manifolds, we require the bundle

projections π to be (infinitely) differentiable, and E without any further

structure is called a fibered manifold.

The space E becomes a fiber bundle (AKA fibre bundle) if each fiber

over x π−1(x), where x ∈M , is homeomorphic to an abstract fiber (AKA

standard fiber, typical fiber, fiber space, fiber) F ; specifically, we must have

the analog of an atlas, a collection of open trivializing neighborhoods

{Ui} that cover M , each with a local trivialization, a homeomorphism

φi : π
−1(Ui)→ Ui × F

p �→ (π(p), fi(p)),
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which in a given π−1(x) allows us to ignore the first component and consider

the last as a homeomorphism

fi : π
−1(x)→ F.

This property of a bundle is described by calling it locally trivial (AKA

a local product space), and if all of M can be made a trivializing neigh-

borhood, then E is a trivial bundle, i.e. E ∼= M × F . The topology of

a non-trivial bundle can be defined via E itself, or imputed by the local

trivializations. Note that if F is discrete, then E is a covering space of M ,

and if M is contractible, then E is trivial.

� Fiber bundles are denoted by various combination of compo-

nents and maps in various orders, frequently (E,M,F ), (E,M, π), or

(E,M, π, F ). Other notations include π : E →M and F −→ E
π−→M .

� The distinction between the fiber and the fiber over x is sometimes

not made clear; it is important to remember that the abstract fiber F

is not part of the bundle space E.

A bundle map (AKA bundle morphism) is a pair of maps ΦE : E →
E′ and ΦM : M → M ′ between bundles that map fibers to fibers, i.e.

π′(ΦE(p)) = ΦM (π(p)). Note that if the bundles are over the same base

space M , this reduces to a single map satisfying π′(Φ(p)) = π(p).

A section (AKA cross section) of a fiber bundle is a continuous map

σ : M → E that satisfies π(σ(x)) = x. At a point x ∈ M a local section

always exists, being only defined in a neighborhood of x; however global

sections may not exist.

� It is important to remember that the base space M is not part of

the bundle space E. In particular, since a global section may not exist,

the base space cannot in general be viewed as being embedded in the

bundle space, and even when it can be, such an embedding is in general

arbitrary. An exception is when there is a canonical global section, for

example the zero section as depicted in the Möbius strip below (and in

a vector bundle in general, see Section 10.3.2).
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Figure 10.2.1 The Möbius strip (AKA Möbius band) has a base space which is a circle M = S1, a fiber which is a line
segment F = [−1,+1], and is non-trivial, since it requires at least two trivializing neighborhoods. In the figure, the fiber over
z has two different descriptions under the two local trivializations, and a local section σ (defined below) is depicted.
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10.2.2 G-bundles

At a point x ∈ M in the intersection of two trivializing neighborhoods on

a bundle (E,M,F ), we have a homeomorphism fif
−1
j : F → F . If each of

these homeomorphisms is the (left) action of an element gij(x) ∈ G, then
G is called the structure group of E. This action is usually required to

be faithful, so that each g ∈ G corresponds to a distinct homeomorphism

of F . The map gij : Ui ∩ Uj → G is called a transition function; the

existence of transition functions for all overlapping charts makes {Ui} a

G-atlas and turns the bundle into a G-bundle. Applying the action of

gij to an arbitrary fj(p) yields

fi(p) = gij (fj(p)) .

For example, the Möbius strip in the previous figure has a structure group

G = Z2, where the action of 0 ∈ G is multiplication by +1, and the action

of 1 ∈ G is multiplication by −1. In the top intersection Ui ∩ Uj , gij = 0,

so that fi and fj are identical, while in the lower intersection gij = 1, so

that fi(p) = gij (fj(p)) = 1 (fj(p)) = −fj(p).
At a point in a triple intersection Ui ∩Uj ∩Uk, the cocycle condition

gijgjk = gik can be shown to hold, which implies gii = e and gji = g−1
ij .

Going the other direction, if we start with transition functions fromM to G

acting on F that obey the cocycle condition, then they determine a unique

G-bundle E.

� It is important to remember that the left action of G is on the

abstract fiber F , which is not part of the entire space E, and whose

mappings to E are dependent upon local trivializations. A left action

on E itself based on these mappings cannot in general be consistently

defined, since for non-abelian G it will not commute with the transition

functions.

A given G-atlas may not need all the possible homeomorphisms of F

between trivializing neighborhoods, and therefore will not “use up” all

the possible values in G. If there exists trivializing neighborhoods on a

G-bundle whose transition functions take values only in a subgroup H of

G, then we say the structure group G is reducible to H . For example,

a trivial bundle’s structure group is always reducible to the trivial group

consisting only of the identity element.
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10.2.3 Principal bundles

A principal bundle (AKA principal G-bundle) (P,M, π,G) has a topo-

logical group G as both abstract fiber and structure group, where G acts on

itself via left translation as a transition function across trivializing neigh-

borhoods, i.e.

fi(p) = gijfj(p),

where the operation of gij is the group operation. Note that the fiber over

a point π−1(x) is only homeomorphic as a space to G in a given trivializing

neighborhood, and so is missing a unique identity element and is a G-torsor,

not a group (see Section 7.4.1).

A principal bundle lets us introduce a consistent right action of G on

π−1(x) (as opposed to the left action on the abstract fiber). This right

action is defined by

g(p) ≡ f−1
i (fi(p)g)

⇒ fi (g(p)) = fi(p)g

for p ∈ π−1(Ui), where in an intersection of trivializing neighborhoods

Ui ∩ Uj we see that

g(p) = f−1
j (fj(p)g)

= f−1
i fif

−1
j (fj(p)g) = f−1

i (gijfj(p)g)

= f−1
i (fi(p)g) = g(p),

i.e. g(p) is consistently defined across trivializing neighborhoods. Via this

fiber-wise action, G then has a right action on the bundle P .

� It is important to remember that M is not part of E, and that the

depiction of each fiber in the bundle π−1(x) ∈ E as “hovering over”

the point x ∈M is only valid locally.

� Note that from its definition and basic group properties, the right

action of G on π−1(x) is automatically free and transitive (making

π−1(x) a “right G-torsor”). An equivalent definition of a principal

bundle excludes G as a structure group but includes this free and tran-

sitive right action of G. Also note that the definition of the right action

is equivalent to saying that fi : π
−1(x)→ G is equivariant with respect

to the right action of G on π−1(x) and the right action of G on itself.



O
cto

b
er

2
0
,
2
0
1
7

1
7
:3
7

M
a
th
em

a
tics

for
P
h
ysics

9
in

x
6
in

b
3
0
7
7

p
a
g
e
2
2
7

1
0
.2
.
D
efi

n
in
g
bu

n
d
les

2
2
7

�

�����

�

�

	� 	�

�

����

������	���	�
������

	����������	����

	�����������	�����

�

	����

	�����

�����

������	���	�
������

������

���������
����
����
 	�������	�


�

Figure 10.2.2 A principal bundle has the same group G as both abstract fiber and structure group, where G acts on itself
via left translation. G also has a right action on the bundle itself, which is consistent across trivializing neighborhoods. The
identity sections (defined below) are also depicted.
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� A principal bundle is sometimes defined so that the structure group

acts on itself by right translation instead of left. In this case the action

of G on the bundle must be a left action.

� A principal bundle can also be denoted P (M,G) or G ↪→ P
π−→M .

Since the right action is an intrinsic operation, a principal bun-

dle map between principal G-bundles (e.g. a principal bundle automor-

phism) is required to be equivariant with regard to it, i.e. we require

ΦE(g(p)) = g(ΦE(p)), or in juxtaposition notation, ΦE(pg) = ΦE(p)g. In

fact, any such equivariant map is automatically a principal bundle map,

and if the base spaces are identical and unchanged by ΦE , then ΦE is an

isomorphism. For a principal bundle map ΦE : (P ′,M ′, G′) → (P,M,G)

between bundles with different structure groups, we must include a homo-

morphism ΦG : G′ → G between structure groups so that the equivariance

condition becomes ΦE(g(p)) = ΦG(g)(ΦE(p)), or in juxtaposition notation,

ΦE(pg) = ΦE(p)ΦG(g).

� Note that the right action of a fixed g ∈ G is thus not a principal

bundle automorphism, since for non-abelian G it will not commute

with another right action.

A principal bundle has a global section iff it is trivial. However, within

each trivializing neighborhood on a principal bundle we can define a local

identity section

σi(x) ≡ f−1
i (e),

where e is the identity element inG. In Ui∩Uj , we can then use fi(σi) = e to

see that the identity sections are related by the right action of the transition

function:

gij(σi) = f−1
i (fi(σi)gij)

= f−1
i (gij)

= f−1
i (gijfj(σj))

= f−1
i (fi(σj))

= σj ,
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or in juxtaposition notation,

σj = σigij .

� The different actions of G are a potential source of confusion. gij has

a left action on the abstract fiber of a G-bundle, which on a principal

bundle becomes left group multiplication, and also has a right action

on the bundle itself that relates the elements in the identity section.

If G is a closed subgroup of a Lie group P (and thus also a Lie group

by Cartan’s theorem), then (P, P/G,G) is a principal G-bundle with base

space the (left) coset space P/G. The right action of G on the entire space

P is just right translation.

10.3 Generalizing tangent spaces

In this section we use matrix notation to reduce clutter, remembering that

bases are row vectors and are acted on by matrices from the right. We

retain index notation when acting on vector components to avoid confusion

with operations on intrinsic vectors.

10.3.1 Associated bundles

If two G-bundles (E,M,F ) and (E′,M, F ′), with the same base space and

structure group, also share the same trivializing neighborhoods and transi-

tion functions, then they are each called an associated bundle with regard

to the other. It is possible to construct (up to isomorphism) a unique prin-

cipal G-bundle associated to a given G-bundle; going in the other direction,

given a principal G-bundle and a left action of G on a fiber F , we can con-

struct a unique associated G-bundle with fiber F . In particular, given a

principal bundle (P,M,G), the rep of G on itself by inner automorphisms

defines an associated bundle (InnP,M,G), and the adjoint rep of G on g

defines an associated bundle (AdP,M, g). If G has a linear rep on a vec-

tor space K
n, this rep defines an assocated bundle (E,M,Kn), which we

explore next.
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Figure 10.3.1 Given a principal bundle, we can construct an associated bundle
for the action of G on a vector space K

n by a linear rep, on itself by inner
automorphisms, and on its Lie algebra g by the adjoint rep. The action of the
structure group is shown in general and for the case in which G is a matrix
group, with matrix multiplication denoted as juxtaposition. Although denoted
identically, the fi are those corresponding to each bundle.

� The G-bundle E with fiber F associated to a principal bundle P

is sometimes written E = P ×G F ≡ (P × F )/G, where the quotient

space collapses all points in the product space which are related by the

right action of some g ∈ G on P and the right action of g−1 on F .

10.3.2 Vector bundles

A vector bundle (E,M, π,Kn) has a vector space fiber Kn (assumed here

to be Rn or Cn) and a structure group that is linear (G ⊆ GL(n,K)) and
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therefore acts as a matrix across trivializing neighborhoods, i.e.

fi(p) = gijfj(p),

where the operation of gij is now matrix multiplication on the vector com-

ponents fj(p) ∈ Kn. If we view Vx ≡ π−1(x) as an internal space on M

with intrinsic vector elements v, the linear map fi : π
−1(x)→ Kn is equiv-

alent to choosing a basis eiμ to get vector components, i.e. fi(v) = vμi ,

where vμi eiμ = v (and latin letters are labels while greek letters are the

usual indices for vectors and labels for bases). The action of the structure

group can then be written

vμi = (gij)
μ
λv

λ
j ,

which is equivalent to a change of basis

eiμ = (g−1
ij )λμejλ,

or as matrix multiplication on basis row vectors

ej = eigij ,

so that the action of gij(x) in Ui ∩Uj is equivalent to a change of frame or

gauge transformation from ei to ej , which is equivalent to a transformation

of internal space vector components in the opposite direction.

� The frame is not a part of the vector bundle, it is a way of viewing the

local trivializations; therefore the view of gij(x) as effecting a change

of basis should not be confused with a group action on either π−1(x)

or E. As the structure group of E, the action of G is on the fiber Kn,

which is not part of E.

If the structure group of a vector bundle is reducible to GL(n,K)e,

then it is called an orientable bundle; all complex vector bundles are

orientable, so orientability usually refers to real vector bundles. The tangent

bundle of M (formally defined in Section 10.4.5) is then orientable iff M

is orientable. On a pseudo-Riemannian manifold M , the structure group

of the tangent bundle is reducible to O(r, s), and if M is orientable then

it is reducible to SO(r, s); if the structure group can be further reduced

to SO(r, s)e, then M and its tangent bundle are called time and space

orientable. Note that this additional distinction is dependent only upon

the metric, and two metrics on the same manifold can have different time

and space orientabilities.
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� The orientability of a vector bundle as a bundle is different than

its orientability as a manifold itself; therefore it is important to under-

stand which version of orientability is being referred to. In particular,

the tangent bundle of M is always orientable as a manifold, but it is

orientable as a bundle only if M is.

A gauge transformation on a vector bundle is a smoothly defined lin-

ear transformation of the basis inferred by the components due to local

trivializations at each point, i.e.

e′iμ = (γ−1
i )λμeiλ,

which is equivalent to new local trivializations where

v′μi = (γi)
μ
λv

λ
i ,

giving us new transition functions

g′ij = γigijγ
−1
j ,

where we have suppressed indices for pure matrix relationships. Thus the

gauge group is the same as the structure group, and a gauge transformation

γ−1
i is equivalent to the transition function gi′i from Ui to U ′

i , the same

neighborhood with a different local trivialization.
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Figure 10.3.2 The elements of the fiber over x in a vector bundle can be viewed
as abstract vectors in an internal space, with the local trivialization acting as a
choice of basis from which the components of these vectors can be calculated. The
structure group then acts as a matrix transformation between vector components,
and between bases in the opposite direction. A gauge transformation is also a
new choice of basis, and so can be handled similarly.

A vector bundle always has global sections (e.g. the zero vector in the

fiber over each point). A vector bundle with fiber R is called a line bundle.

10.3.3 Frame bundles

Given a vector bundle (E,M,Kn), the frame bundle of E is the principal

GL(n,K)-bundle associated to E, and is denoted

F (E) ≡ (F (E),M, π,GL(n,K)).
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The elements p ∈ π−1(x) are viewed as ordered bases of the internal space

Vx ∼= K
n, which we denote

p ≡ ep,

or epμ if operated on by a matrix in index notation. Each trivializing

neighborhood Ui is associated with a fixed frame ei, which we take from the

local trivializations in the vector bundle E, letting us define fi : π
−1(x)→

GL(n,K) by the matrix relation

ep = eifi(p).

In other words fi(p) is the matrix that transforms (as row vectors) the fixed

basis ei into the basis element ep of F (E); in particular, the identity section

is

σi = f−1
i (I) = ei,

where I is the identity matrix. If we again write vector components in these

bases as vμi eiμ = vμp epμ = v, then we have

vμi = fi(p)
μ
λv

λ
p .

The left action of gij is defined by fi(p) = gijfj(p), and applying both

sides to vector components vμp we get

vμi = (gij)
μ
λv

λ
j ,

the same transition functions as in E. The transition functions can be

viewed as changes of frame ej = eigij , or gauge transformations, between

the identity sections of F (E) in Ui∩Uj, i.e. this can be written as a matrix

relation

σj = σigij ,

which as we see next is the usual right action of the transition functions on

identity sections.
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Figure 10.3.3 Given a vector bundle E, we can construct an associated frame
bundle F (E). The elements of the fiber over x in the frame bundle can be viewed
as bases for the internal space, with the local trivialization acting as a choice of a
fixed basis against which linear transformations generate these bases. These fixed
bases are the same as those chosen in the corresponding local trivialization on
the vector bundle, and are acted on by the same transition functions. Although
denoted identically, the fi are those corresponding to each bundle.
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� Unlike with E, the frame is in fact part of the bundle F (E), but

vectors and vector components are not. The left action of gij on the

abstract fiber GL(n,K) is equivalent to a transformation in the oppo-

site direction from the fixed frame in Ui to the fixed frame in Uj, which

is a right action on the identity sections from σi = ei to σj = ej.

� It is important to remember that the elements of π−1(x) in F (E)

are bases of the vector space Vx, and in a given trivializing neighbor-

hood it is only the basis in the identity section that is identified with

the basis underlying the vector components in the same trivializing

neighborhood of E.

The right action of g ∈ GL(n,K) on π−1(x) is defined by fi(g(p)) =

fi(p)g, and applying both sides to ei from the right and using ep = eifi(p)

we immediately obtain

eg(p) = epg,

so that the right action of the matrix g is literally matrix multiplication

from the right on the basis row vector p = epμ. Alternative ways of writing

this relation include

eg(p)μ = epμg
μ
λ,

g(p) = pg.

In particular, if fi(p) = g then we have

p = ep = eig = g(ei) = eg(ei).

☼ Note that since the right action on π−1(x) is by a fixed matrix, it

acts as a transformation relative to each ep, not as a transformation

on the internal space Vx in which all of the bases in π−1(x) live. As

a concrete example, if g00 = 1 and gλ�=0
0 = 0, then eg(p)0 = ep0,

meaning that the transformation p �→ g(p) leaves the first component

of all bases in π−1(x) unaffected. This behavior contrasts with that of

a transformation on Vx itself, which as we will see in the next section

is a gauge transformation.



October 20, 2017 17:37 Mathematics for Physics 9in x 6in b3077 page 237

10.3. Generalizing tangent spaces 237

10.3.4 Gauge transformations on frame bundles

Recall that a gauge transformation on a vector bundle E is an active trans-

formation of the bases underlying the components defining a local trivializa-

tion, which is equivalent to a new set of local trivializations and transition

functions (and is not a transformation on the space E itself). On the frame

bundle F (E), we perform the same basis change for the fixed frames asso-

ciated with each trivializing neighborhood

e′i = eiγ
−1
i ,

which also defines the new identity sections, and is equivalent to new local

trivializations where

f ′
i(p) = γifi(p),

giving us new transition functions

g′ij = γigijγ
−1
j ,

which are the same as those in the associated vector bundle E. We will call

this transformation a neighborhood-wise gauge transformation.

An alternative (and more common) way to view gauge transformations

on F (E) is to transform the actual bases in π−1(x) via a bundle automor-

phism

p′ ≡ γ−1(p),

and then change the fixed bases in each trivializing neighborhood to

e′i = γ−1(ei)

≡ eiγ
−1
i

in order to leave the maps fi(p) the same (which also leaves the identity

sections and transition functions the same). This immediately implies a

constraint on the basis changes in Ui ∩ Uj : since g
′
ij = γigijγ

−1
j , requiring

constant gij means we must have

γ−1
i = gijγ

−1
j g−1

ij .

We will call this transformation an automorphism gauge transforma-

tion.
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� Note that this constraint means that automorphism gauge trans-

formations are a subset of neighborhood-wise gauge transformations,

which allow arbitrary changes of frame in every trivializing neighbor-

hood. Also note that for automorphism gauge transformations, the

matrices γ−1
i (and therefore the new identity section elements e′i) are

determined by the automorphism γ−1, while neighborhood-wise gauge

transformations are defined by arbitrary matrices γ−1
i in each neigh-

borhood.

☼ As with the associated vector bundle, for either type of gauge trans-

formation the gauge group is the same as the structure group, and a

gauge transformation γ−1
i is equivalent to the transition function gi′i

from Ui to U
′
i , the same neighborhood with a different local trivializa-

tion.

We now define the matrices γ−1
p to be those which result from the trans-

formation γ−1(p) on the rest of π−1(x), i.e.

e′p ≡ epγ
−1
p .

Note that γ−1
p is determined by γ−1

i : since we require that f ′
i = fi, we have

e′ifi(p) = e′p
⇒ eiγ

−1
i fi(p) = epγ

−1
p

= eifi(p)γ
−1
p

⇒ γ−1
p = fi(p)

−1γ−1
i fi(p),

or more generally, using the definition of a right action fi(g(p)) = fi(p)g

we get

γ−1
g(p) = g−1γ−1

p g.

� It is important to remember that the matrices γ−1
i are dependent

upon the local trivialization (since they are defined as the matrix act-

ing on the element ei ∈ π−1(x) for x ∈ Ui), but the matrices γ−1
p

are independent of the local trivialization, and are the action of the

automorphism γ−1 on the basis ep.
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Figure 10.3.4 An automorphism gauge transformation on F (E) transforms the actual elements of the fiber over x, including
the identity section elements corresponding to the fixed bases in each local trivialization, thus leaving the local trivializations
unchanged.
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☼ This result can be understood as γ−1 being a transformation on the

internal space Vx itself, applied to all the elements of π−1(x), each of

which is a basis of Vx. For example, in the figure above, γ−1 rotates

all bases clockwise by π/2. To see why this is so, note that the matrix

in the transformation v′μi = (γi)
μ
λv

λ
i has components which are those

of γi ∈ GL(Vx) in the basis eiμ. Therefore in a different basis epμ ∈
π−1(x) we must apply a different matrix v′μp = (γp)

μ
λv

λ
p which reflects

the change of basis epμ = fi(p)
λ
μeiλ via a similarity transformation

γp = fi(p)
−1γifi(p)

⇒ γ−1
p = fi(p)

−1γ−1
i fi(p).

Viewed as a transformation on Vx, γ
−1 will then commute with any

fixed matrix applied to the bases, which as we saw is the right action;

as we see next, this corresponds to the equivariance of γ−1 required by

it being a bundle automorphism.

We now check that γ−1 is a bundle automorphism with respect to the

right action of G, i.e. that γ−1 (g(p)) = g
(
γ−1(p)

)
:

γ−1 (g(p)) = eg(p)γ
−1
g(p)

= eg(p)g
−1γ−1

p g

= epγ
−1
p g

= eγ−1(p)g

= g
(
γ−1(p)

)
� A possible source of confusion is that a local gauge transformation

(different at different points) can be defined globally on F (E); mean-

while, a global gauge transformation (the same matrix γ−1
i at every

point) can only be defined locally (unless F (E) is trivial).

Consider the associated bundle to F (E) with fiber GL(Kn), where the

local trivialization of the fiber over x is defined to be the possible automor-

phism gauge transformations γ−1
i on the identity section element over x in

the trivializing neighborhood Ui. Then recalling that γ−1
i = gijγ

−1
j g−1

ij , we

see that the action of the structure group on the fiber is by inner automor-

phism. Since the values of γ−1 on F (E) are determined by those in the
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identity section, we can thus view automorphism gauge transformations as

sections of the associated bundle (InnF (E),M,GL(Kn)).

10.3.5 Smooth bundles and jets

Nothing we have done so far has required the spaces of a fiber bundle to

be manifolds; if they are, then we require the bundle projections π to be

(infinitely) differentiable and π−1(x) to be diffeomorphic to F , resulting in

a smooth bundle. A smooth G-bundle then has a structure group G

which is a Lie group, and whose elements correspond to diffeomorphisms

of F .

If we consider a local section σ of a smooth fiber bundle (E,M, π, F )

with σ(x) = p, the equivalence class of all local sections that have both

σ(x) = p and also the same tangent space Tpσ is called the jet jpσ with rep-

resentative σ. We can also require that further derivatives of the section

match the representative, in which case the order of matching derivatives

defines the order of the jet, which is also called a k-jet so that the above

definition would be that of a 1-jet. x is called the source of the jet and p

is called its target. With some work to transition between local sections,

one can then form a jet manifold by considering jets with all sources and

representative sections, which becomes a jet bundle by considering jets to

be fibers over their source.

�
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Figure 10.3.5 A jet with representative σ, source x, and target p.
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10.3.6 Vertical tangents and horizontal equivariant forms

A smooth bundle (E,M, π) is a manifold itself, and thus has tangent vec-

tors. A tangent vector v at p ∈ E is called a vertical tangent if dπ(v) = 0,

i.e. if it is tangent to the fiber over x where π(p) = x, so the projection

down to the base space vanishes. The vertical tangent space Vp is then

the subspace of the tangent space Tp at p consisting of vertical tangents,

and viewing the vertical tangent spaces as fibers over E we can form the

vertical bundle (V E,E, πV ), which is a subbundle of TE. We can also

consider differential forms on a smooth bundle, which take arguments that

are tangent vectors on E. A form is called a horizontal form if it vanishes

whenever any of its arguments are vertical.

On a smooth principal bundle (P,M,G), we have a consistent right

action ρ : G→ Diff(P ), and the corresponding Lie algebra action dρ : g →
vect(P ) is then a Lie algebra homomorphism. The fundamental vector

fields corresponding to elements of g are vertical tangent fields; in fact, at

a point p, dρ |p is a vector space isomorphism from g to Vp:

dρ |p : g
∼=→ Vp

In addition, the right action g : P → P of a given element g corresponds to

a right action dg : TP → TP , which maps tangent vectors on P via

dg(v) : TpP → Tg(p)P.

This map is an automorphism of TP restricted to π−1
P (x), which we

denote Tπ−1(x)P , and it is not hard to show that it preserves vertical

tangent vectors. We can then consider the pullback g∗ϕ(v1, . . . , vk) =

ϕ(dg(v1), . . . , dg(vk)) as a right action on the space ΛkP of k-forms on

P .

If we have a bundle (E,M, πE , F ) associated to (P,M, πP , G), we can

define an F -valued form ϕP , which can be viewed on each π−1
P (x) as a

mapping

ϕP : Tπ−1(x)P ⊗ · · · ⊗ Tπ−1(x)P → F × π−1
P (x),

where g ∈ G has a right action dg on Tπ−1(x)P and a left action g on the

abstract fiber F of E. The form ϕP is called an equivariant form if this

mapping is equivariant with respect to these actions, i.e. if

g∗ϕP = g−1 (ϕP ) .

If ϕP is also horizontal, then it is called a horizontal equivariant form

(AKA basic form, tensorial form). If we pull back a horizontal equivariant

form to the base space M using the identity sections, we get forms

ϕi ≡ σ∗
i ϕP
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on each Ui ⊂ M . Using the identity section relation σi = g−1
ij (σj) and the

pullback composition property (g(h))
∗
ϕ = h∗ (g∗ϕ), we see that the values

of these forms satisfy

ϕi =
(
g−1
ij (σj)

)∗
ϕP

= σ∗
j

((
g−1
ij

)∗
ϕP

)
= σ∗

j (gij (ϕP ))

= gij (ϕj) ,

where in the third line gij is acting on the value of ϕP . This means that at a

point x in Ui∩Uj , the values of ϕi and ϕj in the abstract fiber F correspond

to a single point in π−1
E (x) ∈ E, so that the union

⋃
ϕi can be viewed as

comprising a single E-valued form ϕ onM . Such a form is sometimes called

a section-valued form, since for fixed argument vector fields its value on

M is a section of E. It can be shown that the correspondence between

the E-valued forms ϕ on M and the horizontal equivariant F -valued forms

on P is one-to-one. Equivariant F -valued 0-forms on P are automatically

horizontal (since one cannot pass in a vertical argument), and are thus

one-to-one with sections on E.
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Figure 10.3.6 The differential of the right action of G on π−1
P (x) ∈ P creates

an isomorphism to the vertical tangent space g ∼= Vp. A horizontal equivariant
form ϕP on P maps non-vertical vectors to the abstract fiber F of an associated
bundle, and pulling back by the identity sections yields an E-valued form ϕ on
M . Although denoted identically, the fi are those corresponding to each bundle.

On the frame bundle (P,M, πP , GL(n,K)) associated with a vector bun-

dle (E,M, πE ,K
n), a Kn-valued form 	ϕP is then equivariant if

g∗	ϕP = ǧ−1	ϕP ,

where ǧ−1 is a matrix-valued 0-form on P operating on the Kn-valued form

	ϕP . The pullback of a horizontal equivariant form on P to the base space

M using the identity sections satisfies

	ϕi = ǧij 	ϕj ,

where ǧij is now a matrix-valued 0-form on M . At a point x in Ui∩Uj , the

values of 	ϕi and 	ϕj in the abstract fiber Kn correspond to a single abstract

vector in Vx = π−1
E (x) ∈ E, so that the union

⋃
	ϕi can be viewed as
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comprising a single V -valued form 	ϕ onM . Thus an equivariant Kn-valued

0-form on P is a matter field on M .

☼ This correspondence can be viewed as follows. The right action of g

on P is a transformation on bases, so that the equivalent transformation

of vector components is g−1. The left action of g−1 on the fiber is also

a transformation of vector components. Thus the equivariant property

can be viewed as “keeping the same value when changing basis on

both bundles,” so that the values of 	ϕP on π−1
P (x) ∈ P correspond to a

single point in π−1
E (x) ∈ E, i.e a single abstract vector overM . In other

words, 	ϕ ∈ TxM is determined by the value of 	ϕP at a single point

in π−1
P (x) ∈ P . The horizontal requirement means we do not consider

forms which take non-zero values given argument vectors which project

down to a zero vector on M .

Under an automorphism gauge transformation, the transformation of a

horizontal equivariant form on the frame bundle P is defined by the pullback

of the automorphism

	ϕ′
P ≡

(
γ−1

)∗
	ϕP .

The automorphism does not give us a right action on Tπ−1(x)P by a fixed

element, but it does give a right action when acting on the element in the

identity section, so since the identity sections remain constant we have

	ϕ′
i = σ∗

i

(
γ−1

)∗
	ϕP

= σ∗
i

(
γ−1
i

)∗
	ϕP

= σ∗
i γ̌i	ϕP

= γ̌i	ϕi,

where in the third line we used the equivariance of 	ϕP . Under

neighborhood-wise gauge transformations, there is no change in 	ϕP but

we have new identity sections σ′
i(x) = γ−1

i (σi(x)), so that we get

	ϕ′
i = σ′∗

i 	ϕP

=
(
γ−1
i (σi)

)∗
	ϕP

= σ∗
i

(
γ−1
i

)∗
	ϕP

= γ̌i	ϕi,

matching the behavior for both automorphism gauge transformations and

for gauge transformations as previously defined directly on M in Section

10.1.1.
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Note that if a horizontal equivariant form takes values in the abstract

fiber F of another bundle associated to the frame bundle, the same rea-

soning applies, but with γ̌i applied using the left action of G on F . In

particular, recalling from Section 10.3.1 that the adjoint rep ρ = Ad of G

on g defines an associated bundle (AdP,M, g) to P , we can consider a g-

valued horizontal equivariant form Θ̌P on P , whose pullback by the identity

section under a gauge transformation satisfies

Θ̌′
i = γ̌iΘ̌iγ̌

−1
i ,

and which similarly across trivializing neighborhoods also undergoes a

gauge transformation

Θ̌i = ǧijΘ̌j ǧ
−1
ij .

10.4 Generalizing connections

10.4.1 Connections on bundles

The fibers of a smooth bundle (E,M, π) let us define vertical tangents, but

we have no structure that would allow us to canonically define a horizontal

tangent. This structure is introduced via the Ehresmann connection 1-

form (AKA bundle connection 1-form), a vector-valued 1-form on E that

defines the vertical component of its argument v, which we denote v�, and

therefore also defines the horizontal component, which we denote v�:

	Γ(v) ≡ v�,

Hp ≡
{
v ∈ TpE | 	Γ(v) = 0

}
⇒ v = v� + v�,

where v� ∈ Vp, v
� ∈ Hp, and Hp is called the horizontal tangent

space. Viewing the Hp as fibers over E then yields the horizontal bundle

(HE,E, πH), and a vertical form is defined to vanish whenever any of

its arguments are horizontal. Alternatively, one can start by defining the

horizontal tangent spaces as smooth sections of the jet bundle of order 1

over E, which uniquely determines a Ehresmann connection 1-form.

� “Ehresmann connection” can refer to the horizontal tangent spaces,

the horizontal bundle, the connection 1-form, or the complementary

1-form that maps to the horizontal component of its argument.
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Recall that on a smooth principal bundle (P,M, π,G), the right action

ρ : G → Diff(P ) has a corresponding Lie algebra action dρ : g → vect(P )

where dρ |p is a vector space isomorphism from g to Vp. The principal

connection 1-form (AKA principal G-connection, G-connection 1-form)

is a g-valued vertical 1-form Γ̌P on P that defines the vertical part of its

argument v at p via this isomorphism, i.e. the right action of the structure

group transforms it into the Ehresmann connection 1-form:

dρ
(
Γ̌P (v)

) |p ≡ v�

= 	Γ(v)

For g ∈ G, dg(v) : TpP → Tg(p)P preserves horizontal tangent vectors as

well as vertical.

� As with the Ehresmann connection, a “connection” on a principal

bundle can refer to the principal connection 1-form, the horizontal

tangent spaces, or other related quantities.

10.4.2 Parallel transport on the frame bundle

On a frame bundle (P = F (E),M, π,GL(n,K)) with connection, we con-

sider the horizontal tangent space to define the direction of parallel trans-

port. More precisely, we define a horizontal lift of a curve C from x to y

on M to be a curve CP that projects down to C and whose tangents are

horizontal:

π (CP ) = C

ĊP |p ∈ Hp

There is a unique horizontal lift of C that starts at any p ∈ π−1(x), whose

endpoint lets us define the parallel transporter on F (E)

‖C : π−1(x)→ π−1(y).

It is not hard to show that the parallel transporter is a diffeomorphism

between fibers, and that it commutes with the right action:

‖C (g (p)) = g (‖C (p))

We can then recover the parallel transporter onM by choosing a frame (i.e.

a local trivialization), using the horizontal lift that starts at the element
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σi = ei in the identity section, and recalling the relation ep = eifi(p):

‖C (ei |x ) = ei |y fi (‖C (ei |x ))
⇒ (‖C (v))

μ
i |y = fi (‖C (ei |x ))μ λv

λ
i |x

⇒‖μ λ (C) = fi (‖C (ei |x ))μ λ

The second line transforms vector components using the change of basis

matrix in the opposite direction.

Similarly, on the frame bundle we can recover the connection 1-form on

v ∈ TxM within a trivializing neighborhood by using the pullback of the

identity section:

Γ̌i(v) = σ∗
i Γ̌P (v)

= Γ̌P (dσi(v))

On F (E), σi = ei is the frame used to define the components of vectors in

the internal space on Ui, and Γ̌i(v) then is the element of gl(n,K) corre-

sponding to the vertical component of v after being mapped to a tangent

of the identity section. Thus since we consider the horizontal tangent space

to define the direction of parallel transport, Γ̌i(v) is the infinitesimal linear

transformation that takes the parallel transported frame to the frame in

the direction v, the same interpretation as we found in Section 9.1.

� It is important to remember that Γ̌i takes values that are dependent

upon the local trivialization that defines the identity section (i.e. it

is frame-dependent), while the values of Γ̌P are intrinsic to the frame

bundle. This reflects the fact that the connection is a choice of hori-

zontal correspondences between frames, and so cannot have any value

intrinsic to E.

The transition functions on the frame bundle can be viewed asGL(n,K)-

valued 0-forms ǧij on Ui ∩ Uj, and it can be shown that

Γ̌i(v) = ǧijΓ̌j(v)ǧ
−1
ij + ǧijdǧ

−1
ij (v),

which is the transformation of the connection 1-form under a change of

frame ǧ−1
ij from Section 9.1.4. This is consistent with the interpretation

of the action of gij as a change of frame g−1
ij in Section 10.3.2, and it

can be shown that a unique connection on F (E) is determined by locally

defined connection 1-forms on M and sections that are related by the same

transition functions.
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Figure 10.4.1 A principal connection 1-form on (P,M,G) defines the vertical component of its argument as a value in the
Lie algebra g via the isomorphism defined by the differential of the right action dρ. A horizontal lift of a curve C yields the
parallel transporter, and the pullback by the identity section recovers the connection 1-form on M .
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☼ The inhomogeneous transformation of the connection 1-form can be

viewed as reflecting the fact that both the location and “shape” of

the identity section is different across local trivializations (although we

have depicted the identity sections as “flat,” the values of each σi(x)

are smooth but arbitrary).

☼ This demonstrates the advantage of the principal bundle formu-

lation, in that the connection 1-form on M is frame-dependent, and

therefore cannot in general be defined on all of M , while in contrast

the principal connection 1-form is defined on all of F (E), and can be

used to determine a consistent connection 1-form on M within each

trivializing neighborhood.

Under either type of gauge transformation, it can also be shown that as

expected we have

Γ̌′
i(v) = γ̌iΓ̌i(v)γ̌

−1
i + γ̌idγ̌

−1
i (v).

10.4.3 The exterior covariant derivative on bundles

The exterior covariant derivative of a form on a smooth bundle with connec-

tion is the horizontal form that results from taking the exterior derivative

on the horizontal components of all its arguments, i.e. for a k-form ϕ we

define

Dϕ(v0, . . . , vk) ≡ dϕ(v�

0 , . . . , v
�

k ).

On a smooth bundle, Dϕ can then be viewed as the “sum of ϕ on the

boundary of the horizontal hypersurface defined by its arguments.” Note

that these boundaries are all defined by horizontal vectors except those

including a Lie bracket, which may have a vertical component. So for

example, if ϕ is a vertical 1-form we have Dϕ(v, w) = −ϕ([v�, w�]), the

other terms all vanishing.

For a vector bundle (E,M,Kn) associated to a smooth principal bun-

dle with connection (P,M,GL(n,K)), it can be shown that an Kn-valued

horizontal equivariant form 	ϕP on P satisfies the familiar equation

D	ϕP = d	ϕP + Γ̌P ∧ 	ϕP ,
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where as usual the derivatives are taken on the components of 	ϕP , and

the action of gl(n,K)-valued Γ̌P on the values of 	ϕP in is the differential

of the left action of GL(n,K). D	ϕP is then also a horizontal equivariant

form. Applying the pullback by the identity section to the exterior covariant

derivative, we obtain the expected

D	ϕi = d	ϕi + Γ̌i ∧ 	ϕi.

� As with the connection 1-form, it is important to remember that

the values of 	ϕi on M are components operated on by the matrix Γ̌i,

both of which are defined by a local trivialization.

The immediate application of the above is to a Kn-valued form on the

frame bundle. However, we can also apply it to other associated bun-

dles to P . In particular, recalling Section 10.3.6, in the associated bundle

(AdP,M, gl(n,K)) we can apply it to a gl(n,K)-valued horizontal equivari-

ant form Θ̌P on P , where the left action of gl(n,K) on itself is dρ = ad,

i.e. the Lie bracket. For such a form we then have

DΘ̌P = dΘ̌P + Γ̌P [∧]Θ̌P ,

where again the exterior derivative is taken on the matrix components of

Θ̌P , and the action of gl(n,K)-valued Γ̌P on the values of Θ̌P is the Lie

bracket, the differential of the left action of GL(n,K). Applying the pull-

back by the identity section recovers the same formula for algebra-valued

forms on M , as previously seen in Section 9.2.3.

10.4.4 Curvature on principal bundles

On a smooth principal bundle with connection (P,M,G), the exterior co-

variant derivative gives us a definition for the curvature of the principal

connection, the horizontal g-valued 2-form on P

ŘP ≡ DΓ̌P .

Recall that in Section 9.2.5 we saw that the analog of the above equation

on M itself did not hold. Since Γ̌P is vertical, this can be written

ŘP (v, w) = −Γ̌P ([v�, w�])

⇒ dρ
(
ŘP (v, w)

) |p = − [v�, w�]
�
,

so that the curvature of the principal connection is the element of g cor-

responding to the vertical component of the Lie bracket of the horizontal

components of its arguments.
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On a frame bundle, we associate the horizontal tangent space with par-

allel transport, and the curvature is the “infinitesimal linear transformation

between parallel transport in opposite directions around the boundary of

the horizontal hypersurface defined by its arguments,” or equivalently the

“infinitesimal linear transformation associated with the vertical component

of the negative Lie bracket of the horizontal components of its arguments.”

The curvature onM can be recovered using identity sections σi as with the

connection:

Ři ≡ σ∗
i ŘP

When G is a matrix group, we find analogs of equations for curvature

on M using the relations from the previous section:

ŘP = dΓ̌P +
1

2
Γ̌P [∧]Γ̌P

Ři = dΓ̌i +
1

2
Γ̌i[∧]Γ̌i

DŘP = 0

Note that ŘP is a map from 2-forms on P to g, where G has a left action

via the adjoint rep of G on g. One can then show that ŘP is equivariant

with respect to this action and that of G on 2-forms, i.e. we have

g∗ŘP = g−1
Ad

(
ŘP

)
.

Thus ŘP is a horizontal equivariant form, and recalling Section 10.3.6 we

have the expected transformations

Ři = ǧijŘj ǧ
−1
ij ,

Ř′
i = γ̌iŘiγ̌

−1
i .

If a flat connection (zero curvature) can be defined on a principal bundle,

then the structure group is discrete. If in addition the base space is simply

connected, then the bundle is trivial.

10.4.5 The tangent bundle and solder form

Returning to our motivating example, the tangent bundle on a man-

ifold Mn, denoted TM , is a smooth vector bundle (E,Mn,Rn) with

a (possibly reducible) structure group GL(n,R) that acts as an in-

verse change of local frame across trivializing neighborhoods. These

trivializing neighborhoods can be obtained from an atlas on M , with fiber
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Figure 10.4.2 The curvature of the principal connection is the element of g corresponding to the vertical component of the
negative Lie bracket of the horizontal components of its arguments. The sections used at q and r are arbitrary, since they
don’t affect the vertical component of the loop remainder. If the arguments are pulled back using the identity section, we
recover the curvature on the base space M .
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homeomorphisms fi : TxM → Rn defined by components in the coordinate

frame eiμ = ∂/∂xμi , so that the transition functions are Jacobian matrices

vμi = (gij)
μ
λv

λ
j

=
∂xμi
∂xλj

vλj

associated with the transformation of vector components. M is orientable

iff these Jacobians all have positive determinant, i.e. iff the structure group

is reducible to GL(n,R)e (the definition of TM being orientable). A section

of the tangent bundle is a vector field onM . A change of coordinates within

each coordinate patch then generates a change of frame

∂

∂x′μi
=
∂xμi
∂x′λi

∂

∂xλi
,

which is equivalent to new local trivializations where

v′μi =
∂x′μi
∂xλi

vλi ,

giving us new transition functions

∂x′μi
∂x′λj

=
∂x′μi
∂xσi

∂xσi
∂xνj

∂xνj

∂x′λj
.

The tangent frame bundle (AKA frame bundle), denoted FM , is the

smooth frame bundle of TM , i.e. (FM,Mn, GL(n,R)), where the fixed

bases in each trivializing neighborhood are again obtained from the atlas

on M , giving the same transition functions as in the tangent bundle. The

bases in π−1(x) are thus defined by

epμ = fi(p)
λ
μ
∂

∂xλi
.

A section of the frame bundle is a frame on M , and a global section is a

global frame, so that M is parallelizable iff FM is trivial. The right action

of a matrix gμλ ∈ GL(n,R) operates on bases as row vectors, and an auto-

morphism of FM along with a redefinition of fixed bases to preserve identity

sections generates changes of frame in each trivializing neighborhood that

preserve the transition functions.

� The tangent frame bundle is also denoted F (M), but rarely F (TM),

which is what would be consistent with general frame bundle notation.
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The tangent frame bundle is special in that we can relate its tangent

vectors to the elements of the bundle as bases. Specifically, we define the

solder form (AKA soldering form, tautological 1-form, fundamental 1-

form), as a R
n-valued 1-form 	θP on P = FMn which at a point p = ep

projects its argument v ∈ TpFM down to M and then takes the resulting

vector’s components in the basis ep, i.e.

	θP (v) ≡ dπ(v)μp .

The projection makes the solder form horizontal, and it is also not hard

to show it is equivariant, since both actions essentially effect a change of

basis:

g∗	θP (v) = ǧ−1	θP (v).

The pullback by the identity section

	θi ≡ σ∗
i
	θP

simply returns the components of the argument in the local basis, and thus

is identical to the dual frame 	β viewed as a frame-dependent Rn-valued

1-form from Section 9.2.4. Thus recalling Section 10.3.6, the values of 	θP
in the fiber over x correpond to a single point in the associated bundle TM ,

so that the union of the pullbacks 	θi can be viewed as a single TM -valued

1-form on M

	θ : TM → TM

which identifies, or “solders,” the tangent vectors on M to elements in the

bundle TM associated to FM (explaining the alternative name “tautolog-

ical 1-form”).

� The TM -valued 1-form 	θ is also sometimes called the solder form,

and can be generalized to bundles E with more general fibers as

θE(v) : TM → E or θσ0(v) : TM → Vσ0E, where in the second case

σ0 is a distinguished section (e.g. the zero section in a vector bun-

dle). This is called a soldering of E to M ; for example a Riemannian

metric provides a soldering of the cotangent bundle to M . In classi-

cal dynamics, if M is a configuration space then the solder form to

the cotangent bundle is called the Liouville 1-form, Poincaré 1-form,

canonical 1-form, or symplectic potential.
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� The solder form can also be used to identify the tangent space with

a subspace of a vector bundle over M with higher dimension than M .

10.4.6 Torsion on the tangent frame bundle

The covariant derivative of the solder form defines the torsion on P

	TP ≡ D	θP

= d	θP + Γ̌P ∧ 	θP .
	TP is a horizontal equivariant form since 	θP is. Examining the first few

components, we have:

	TP (v, w) = d	θP (v�, w�)

⇒ ε2 	TP (v, w) = 	θP (εw� |p+εv� )− 	θP (εw� |p )− . . .
= dπ (εw� |p+εv� )

μ

p+εv�

− dπ (εw� |p )μp − . . .
The first term projects the horizontal component of w at p+ εv� down to

M , which is the same as projecting w itself down to M since the projection

of the vertical part vanishes. Then we take its components in the basis at

p+ εv�, which is the parallel transport of the basis at p in the direction v.

These are the same components as that of the projection of w at p + εv�

parallel transported back to p in the basis at p. Thus the torsion on P is

the “sum of the boundary vectors of the surface defined by the projection

of its arguments down to M after being parallel transported back to p.”

This analysis makes it clear that the pullback of the torsion on P by

the identity section

	Ti ≡ σ∗
i
	TP ,

which by our previous pullback results recovers the torsion on M , just

bounces the argument vectors to the identity section and back, thus yielding

the same interpretation for torsion that we arrived at in Section 9.2.4.

It can also be shown that the analog of the first Bianchi identity M

holds on P , with the original being recovered upon pulling back by the

identity section:

D	TP = ŘP ∧ 	θP
D	Ti = Ři ∧ 	θi
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10.4.7 Spinor bundles

A spin structure on an orientable Riemannian manifold M is a principal

bundle map

ΦP : (P,Mn, Spin(n))→ (FSO,M
n, SO(n))

from the spin frame bundle (AKA bundle of spin frames) P to the

orthonormal frame bundle FSO with respect to the double covering map

ΦG : Spin(n) → SO(n). The equivariance condition on the bundle map

is then ΦP (U(p)) = ΦG(U)(ΦP (p)), so that the right action of a spinor

transformation U ∈ Spin(n) on a spin basis corresponds to the right ac-

tion of a rotation ΦG(U) on the corresponding orthonormal basis ΦP (p).

On a time and space orientable pseudo-Riemannian manifold, a spin struc-

ture is a principal bundle map with respect to the double covering map

ΦG : Spin(r, s)e → SO(r, s)e (except in the case r = s = 1, which is not a

double cover).
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Figure 10.4.3 A spin structure is a principal bundle map that gives a global 2-1
mapping from the fibers of the spin frame bundle to the fibers of the orthonormal
frame bundle. The existence of a spin structure means that a change of frame
can be smoothly and consistently mapped to changes of spin frame, permitting
the existence of spinor fields.

If a spin structure exists forM , then M is called a spin manifold (one

also saysM is spin; sometimes a spin manifold is defined to include a specific

spin structure). Any manifold that can be defined with no more than two

coordinate charts is then spin, and therefore any parallelizable manifold

and any n-sphere is spin. As we will see in Section 10.5.2, the existence of

spin structures can be related to characteristic classes. It also can be shown

that any non-compact spacetime manifold with signature (3, 1) is spin iff

it is parallelizable. Finally, a vector bundle (E,Mn,Cm) associated to the

spin frame bundle (P,M, Spin(r, s)e) under a rep of Spin(r, s)e on Cm is

called a spinor bundle, and a section of this bundle is a spinor field on

M .

For a charged spinor field taking values in U(1)⊗C
m, where Cm is acted

on by a rep of Spin(r, s)e, the action of (eiθ, U) ∈ U(1) × Spin(r, s)e and
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(−eiθ,−U) are identical, so that the structure group is reducible to

Spinc(r, s)e ≡ U(1)×Z2 Spin(r, s)
e

≡ (U(1)× Spin(r, s)e) /Z2,

where the quotient space collapses all points in the product space which are

related by changing the sign of both components. The superscript refers to

the circle U(1). A spinc structure on an orientable pseudo-Riemannian

manifold M is then a principal bundle map

ΦP : (P,Mn, Spinc(r, s)e)→ (FSO,M
n, SO(r, s)e)

with respect to the double covering map ΦG : Spinc(r, s)e → SO(r, s)e

where the U(1) factor is ignored. For spinor matter fields that take values

in V ⊗Cm for some internal space V with structure (gauge) group G with

Z2 in its center (e.g. a matrix group where the negative of every element re-

mains in the group), we can analogously define a spinG structure. It can

be shown (see Avis and Isham [1980]) that spinG structures exist on any

four dimensional M if such a G is a compact simple simply connected Lie

group, e.g. SU(2i); therefore the spacetime manifold has no constraints due

to spin structure in the standard model, or in any extension that includes

SU(2) gauged spinors.

10.5 Characterizing bundles

10.5.1 Universal bundles

Given a fiber bundle (E,M, π, F ) and a continuous map to the base space

f : N → M , the pullback bundle (AKA induced bundle, pullback of E

by f) is defined as

f∗(E) ≡ {(n, p) ∈ N × E | f(n) = π(p)} ,
and is a fiber bundle (f∗(E), N, πf , F ) with the same fiber but base space

N . Projection of q = (n, p) ∈ f∗(E) onto n is just the bundle projection

πf : f
∗(E)→ N , while projection onto p defines a bundle map Φ: f∗(E)→

E such that π (Φ(q)) = f (πf (q)) = x ∈ B.

For any topological group G, there exists a universal principal bun-

dle (AKA universal bundle) (EG,BG,G) such that every principal G-

bundle (P,M,G) (with M at least a CW-complex) is the pullback of EG

by some f : M → BG. The base space BG is called the classifying space

for G. The pullbacks of a principal bundle by two homotopic maps are
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isomorphic, and thus for a givenM the homotopy classes of the maps f are

one-to-one with the isomorphism classes of principal G-bundles over M .

Every vector bundle (E,M,Kn) is therefore the pullback of the uni-

versal vector bundle En(K
∞) (AKA tautological bundle, universal bun-

dle), the vector bundle associated to the universal principal bundle for its

structure group. It can be shown that any vector bundle admits an inner

product, so we need only consider the structure groups O(n) and U(n),

whose classifying spaces are each a Grassmann manifold (AKA Grass-

mannian) Gn(K
∞). This is a limit of the finite-dimensional Grassmann

manifold Gn(K
k), which is all n-planes in K

k through the origin. Each

point x ∈ Gn(K
k) thus corresponds to a copy of Kn, as does the fiber over

x in the universal vector bundle, explaining the alternate name “tautolog-

ical bundle.” The total space of the associated universal principal bundle

is the Stiefel manifold Vn(K
∞), a limit of the finite-dimensional Vn(K

k),

defined as all ordered orthonormal n-tuples in Kk; the bundle projection

simply sends each n-tuple to the n-plane containing it.
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Figure 10.5.1 The Grassmann manifold Gn(R
k) is all n-planes in R

k through
the origin, and is the base space of the Stiefel manifold Vn(R

k), defined as all
ordered orthonormal n-tuples in R

k where the fiber is O(n) and the bundle pro-
jection simply sends each n-tuple to the n-plane containing it. The tautological
bundle is the associated vector bundle En(R

k) with fiber R
n, and the universal

principal bundle for O(n) is the limit Vn(K
∞).

� Grassmann manifolds can also be denoted Gr(n,Kk), Gr(n, k), Gn,k

or gn,k and the order of the parameters are sometimes reversed. Stiefel

manifolds have similar alternative notations.
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10.5.2 Characteristic classes

Vector bundles (and thus their associated principal bundles) can be exam-

ined using characteristic classes. For a given vector bundle (E,M,Kn)

these are classes of elements in the cohomology groups of the base space

c(E) ∈ H∗(M ;R), for some ring R, which commute with the pullback of

any f : N →M :

c (f∗ (E)) = f∗ (c (E))

In the second term, the pullback by f means that f∗ (c (E)) ∈ H∗(N ;R).

Since a trivial vector bundleM×Kn is the pullback of (E, 0,Kn) by f : M →
0, where 0 is viewed as a space with a single point, we have c (M ×Kn) =

c (f∗ (E)) = f∗ (c (E)) = 0, i.e. the characteristic classes of a trivial bundle

vanish (or a characteristic class acts as an obstruction to a bundle being

trivial). However there exist non-trivial bundles whose characteristic classes

also all vanish. Similarly, if two vector bundles with the same base space are

isomorphic, then they are related by the identity pullback; thus a necessary

(but not sufficient) condition for isomorphism is identical characteristic

classes. All characteristic classes can be determined via the cohomology

classes of the classifying spaces BO(n) and BU(n), since e.g. for real vector

bundles any (E,M,Rn) is the pullback of BO(n) by some f , so that we

have c (E) = c (f∗ (BO(n))) = f∗ (c (BO(n))).
For a real vector bundle (E,M,Rn) there are three characteristic

classes: the Stiefel-Whitney classes wi(E) ∈ Hi(M ;Z2), the Pontrya-

gin classes pi(E) ∈ H4i(M ;Z), and if the bundle is oriented the Euler

class e(E) ∈ Hn(M ;Z). For complex vector bundles, there are the Chern

classes ci(E) ∈ H2i(M ;Z). The characteristic class of a manifold M is

defined to be that of its tangent bundle, e.g.

wi(M) ≡ wi(TM).

If M is a compact orientable four-dimensional manifold, then it is paral-

lelizable iff w2(M) = p1(M) = e(M) = 0.

A non-zero Stiefel-Whitney class wi(E) acts as an obstruction to the

existence of (n − i + 1) everywhere linearly independent sections of E.

Therefore, if such section do exist, then wj(E) vanishes for j ≥ i; in partic-

ular, a non-zero wn(E) means there are no non-vanishing global sections.

It can be shown that w1(E) = 0 iff E is orientable, so that M is orientable

iff w1(M) = 0.

Spin structures exist on an oriented M iff w2(M) = 0; if spin structures

do exist, then their equivalency classes have a one-to-one correspondence
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with the elements of H1(M,Z2). Inequivalent spin structures have either

inequivalent spin frame bundles or inequivalent bundle maps; in four di-

mensions, there is only one spin frame bundle up to isomorphism, so that

different spin structures correspond to different bundle maps (i.e. different

spin connections).

Spinc structures exist on an orientedM if spin structures exist, but also

in some cases where they do not; for example if M is simply connected and

compact. If spinc structures do exist, then their equivalency classes have

a one-to-one correspondence with the elements of H2(M,Z), and in four

dimensions, unlike the case for spin structures, inequivalent spinc structures

can have inequivalent spin frame bundles.

10.5.3 Related constructions and facts

The direct product of two vector bundles (E,M,Km) and (E′,M ′,Kn) is

another vector bundle

(E × E′,M ×M ′,Km+n).

If we form the direct product of two vector bundles with the same base

space, we can then restrict the base space to the diagonal via the pullback

by f : M ×M → M defined by (x, x) �→ x. The resulting vector bundle is

called the Whitney sum (AKA direct sum bundle), and is denoted

(E ⊕ E′,M,Km+n).

The total Whitney class of a real vector bundle (E,M,Rn) is defined

as

w(E) ≡ 1 + w1(E) + w2(E) + · · ·+ wn(E).

The series is finite since wi(E) vanishes for i > n, and is thus an element

of H∗(M,Z2). The total Whitney class is multiplicative over the Whitney

sum, i.e.

w(E ⊕ E′) = w(E)w(E′).

The total Chern class is defined similarly, and has the same multiplicative

property.

The flag manifold Fn(K
∞) is a limit of the finite-dimensional flag

manifold Fn(K
k), which is all ordered n-tuples of orthogonal lines in Kk

through the origin. The name is due to the fact that an ordered n-tuple of

orthogonal lines in Kk is equivalent to an n-flag, a sequence of subspaces

V1 ⊂ · · · ⊂ Vn in Kk where each Vi has dimension i.
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Categories and functors

Here we provide a very brief overview of the most basic ideas in category

theory, a general way to view mathematical objects and their interrelation-

ships.

A.1 Generalizing sets and mappings

Recall the types of set mappings from Section 1.2. It can be useful to

generalize both sets and mappings, which takes us from set theory to cate-

gory theory. Category theory eliminates any dependence upon elements,

referring only to classes of generic objects. The class (AKA collection)

of objects ob(C) of a category C sometimes may be defined as sets with a

certain structure, but in category theory they are left completely abstract,

with the following definitions built upon them:

• Morphisms: a set mor(X,Y ) (also denoted hom(X,Y ) or C(X,Y )) of

morphisms between X and Y is defined for every X,Y ∈ ob(C); every

mor(X,X) includes an identity 1X

• Composition: an operator ◦ is defined between morphisms that is dis-

tributive and respects the identity, i.e. for morphisms m : X → Y and

n : Y → Z we have n ◦ m : X → Z with (n ◦ m) ◦ l = n ◦ (m ◦ l) and

m ◦ 1X = m = 1Y ◦m
A category C then consists of a class of objects ob(C), a collection of sets

of morphisms mor(X,Y ) between these objects, and a morphism composi-

tion operator. It is helpful in understanding these definitions to consider

their application to sets and mappings. In this case, a class of objects would

consist of sets along with a structure; morphisms would be mappings be-

tween these objects; and the category would consist of the class and the

mappings.

265
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Figure A.1.1 Categories contrasted with sets as a particular example of objects.

A.2 Mapping mappings

As described so far, category theory has essentially provided an abstract

generalization of sets and mappings that ignores elements and thus can be

used for diverse constructs. The real power of categories comes in the next

step, in which we “move up a level” and define mappings between entire

categories.

• Covariant functor: a mapping F between categoriesC andD such that

∀X ∈ C, F (X) ∈ D, and ∀m ∈ mor(X,Y ), F (m) ∈ mor (F (X), F (Y )),

with F (1X) = 1F (X) and F (n ◦m) = F (n) ◦ F (m)

• Contravariant functor: A “reversing” functor with properties as

above, except that F (m) ∈ Mor (F (Y ), F (X)) and F (n ◦m) = F (m) ◦
F (n), i.e. a contravariant functor “flips the direction of morphisms”

To get a concrete sense of how functors work, we give an example that

assumes familiarity with groups.
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Category of sets

Class of all sets

mor(X, Y)
Object
(set)

Y

Object
(set)

X

mor(Y, X)

Category of groups

Class of all groups

mor(G, H)
Object
(group)

H

Object
(group)

G

mor(H, G)

Covariant functor:
drops group structure

Category of real functions on sets

mor(f, g)

mor(g, f)

Object
(function)

g

Real numbers

Object
(function)

f

Contravariant functor: 
m : X → Y, but 
F(m)[g(Y)] ≡ g(m(X)), so 
F(m) : F(Y) → F(X) 

Figure A.2.1 Simple examples of categories and functors: from groups to sets
to real functions on sets.

� It should be emphasized that although we are using sets and map-

pings as examples of objects and morphisms, category theory can be
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268 Categories and functors

used as a tool to illuminate and compare many dissimilar structures

that otherwise would be difficult to relate to each other.

Category theory can be used to generalize many other concepts; for

example, the types of mappings in Figure 1.2.1 defined in terms of set ele-

ments have generalized definitions in category theory, as do the combining

operations on algebraic objects in Section 2.3.
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Index

*-algebra, 113
1-1, 2
1-form, 38
2-form, 12

A
abelian, 5
abelian algebra, 16
abelian Lie algebra, 16
abelian space, 81
absolute derivative, 165
abstract index notation, 41
action, 203
adjoint, 121
adjoint representation, 134
Ado’s theorem, 133
affine group, 127
affine map, 135
affine representation, 135
affine space, 135
Alexander duality, 110
algebra, 1, 15
algebra of physical space, 146
algebra representation, 131
algebra-valued form, 47
algebraic Bianchi identity, 187
algebraic form, 12, 49
alternating algebra, 28
alternating form, 44
alternating group, 7
alternating symbol, 30

Ambrose-Singer theorem, 193

anholonomic frame, 89

anti-automorphism, 113

anti-derivation, 97

anti-hermitian, 121

anti-linear, 11

anti-symmetric, 121

anti-symmetrized tensor, 42

associated basis, 89

associated bundle, 229

associated Lie algebra, 114

associative algebra, 15

associative algebra freely generated
by V, 20

atlas, 84

automorphism, 2

automorphism gauge transformation,
237

automorphism group, 6

axial vector, 33

B

Baker-Campbell-Hausdorff formula,
116

Banach algebra, 113

Banach space, 112

base space, 221

basepoint, 77

basic form, 242

Betti number, 76
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bi-invariant, 115
Bianchi identity

first, 187
second, 190

bijective, 2
bilinear, 11
bilinear form, 49
bivector, 36
Bott periodicity, 142
boundary, 57, 72
boundary homomorphism, 68
bra-ket notation, 113
Brouwer degree, 76
bundle connection 1-form, 246
bundle map, 223
bundle morphism, 223
bundle of spin frames, 257
bundle projection, 221
bundle space, 221
bundle submersion, 221
B*-algebra, 113

C
Calabi-Yau manifold, 215
canonical 1-form, 256
canonical isomorphism, 39
Cartan formalism, 175
Cartan’s first structure equation, 181
Cartan’s second structure equation,

184
Cartan’s theorem, 112
Cartan-Hadamard theorem, 204
Cartesian product, 18
Cartesian space, 9
category, 265
category theory

biproduct, 17
coproduct, 17
direct sum, 17
product, 17
sum, 17

Cauchy sequence, 112
Cauchy’s theorem, 7
Cauchy-Schwarz inequality, 11
Cayley’s theorem, 7
Cayley-Klein parameters, 126

cell complex, 60
cells, 60
cellular homology, 76
center, 7
centralizer, 7
chain complex, 71
change of basis, 10
change of coordinates, 84
change of frame, 161
characteristic, 8
characteristic classes, 261
characteristic maps, 61
charge, 219
charged spinor field, 220
Chern classes, 262
chiral basis, 146, 149
chiral representation, 146
chiral spinor rep, 144
chirality operator, 149
Christoffel connection, 197
Christoffel symbols, 198
class, 265
classifying space, 259
Clebsch-Gordan theory, 134
Clifford algebra, 34
Clifford group, 150, 152
Clifford multiplication, 34
Clifford number, 36
closed form, 107
closed manifold, 57
cochain group, 76
coconut theorem, 90
cocycle condition, 225
codimension, 95
cohomology group, 76
cohomology ring, 76
collection, 265
commutative, 5
commutative Lie algebra, 16
comoving frame, 89
compact space, 56
compact support, 98
compact symplectic group, 124
complete metric space, 112
complete vector field, 98
completely anti-symmetric symbol, 30
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Index 273

complex Lie group, 119
complex manifold, 85
complex projective space, 62
complex scalar field, 220
complex symplectic group, 124
complexification, 10
component group, 136
component notation, 43
composition, 265
conformal factor, 215
conformal map, 215
conformal tensor, 205, 215
conformal transformation, 215
connected space, 56
connected sum, 63
connection, 165

Christoffel, 197
flat, 184
isometric, 196
Levi-Civita, 197
metric, 196
Riemannian, 197

connection 1-form, 165
connection coefficients, 167
conservation law, 202
conserved current, 202
conserved quantity, 202
continuity equation, 202
continuous mapping, 56
contractible, 59
contraction, 42
contravariant functor, 266
contravariant vector, 40
coordinate basis, 89
coordinate chart, 84
coordinate frame, 89
coordinate function, 84
coordinate transformation, 84
coordinates, 84
coset, 22
coupling constant, 219
covariant Dirac matrices, 147
covariant divergence, 199
covariant functor, 266
covariant vector, 40
covariant vector field, 87

covector, 40
covering space, 118
critical point, 95
critical value, 95
cross product, 15
cross section, 223
cup product, 76
curl, 105
Current, 201
Current 4-vector, 201
Current density, 201
current density, 201
Current form, 201
Current vector, 201
current vector, 201
curvature 2-form, 184
curvature tensor, 186
CW-complex, 60
cycle, 72
cyclic group, 7
C*-algebra, 113

D
de Rham cohomology, 108
de Rham theorem, 109
decomplexification, 10
decomposable representation, 133
decomposable tensor, 40
defining representation, 127
deformation retraction, 59
degree, 34, 97
derivation, 96
derivative, 93

Lie, 97
diffeomorphism, 92
differentiable structure, 84
differential, 93
differential form, 88
dimension, 10, 40, 44, 52
Dirac basis, 146
Dirac matrices, 146
Dirac notation, 113
Dirac rep, 144
Dirac representation, 146
direct product, 18

vector bundles, 263
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direct sum, 18
direct sum bundle, 263
divergence, 105
divergence theorem, 105, 200
division algebra, 16
division ring, 16
Donaldson theory, 54
dot product, 10, 37
dual, 32, 38
dual basis, 38
dual cell structure, 110
dual space, 38
Dynkin diagrams, 139

E
east coast signature, 13
effective action, 129
Ehresmann connection 1-form, 246
eigenvalues, 121
eigenvectors, 121
Eilenberg-MacLane space, 81
Einstein manifold, 203
Einstein summation convention, 10
Einstein tensor, 205
embedding, 95
endomorphism, 2
entire space, 221
epimorphism, 2
epsilon symbol, 30
equation of continuity, 202
equivariant, 130
equivariant form, 242
Euclidean group, 126
Euclidean signature, 13
Euler characteristic, 76
Euler class, 262
Euler diagram, 14
exact form, 107
exceptional Lie algebra, 139
excision theorem, 75
exponential map, 115, 170
exterior algebra, 28
exterior covariant derivative, 177
exterior derivative, 101
exterior form, 12, 49

algebra-valued, 47

and the exterior product, 44
matrix-valued, 47
vector-valued, 47

exterior power, 28
exterior product, 27, 37
external product, 19
external sum, 19

F
factor group, 22
factor ring, 24
faithful action, 129
Feit-Thompson theorem, 25
fiber, 118
fiber bundle, 221
fiber over x, 221
fibered manifold, 221
field, 5
field line, 171
field strength, 219
first Bianchi identity, 187
first isomorphism theorem, 22
fixed point free action, 129
flag manifold, 263
flat, 39
flat connection, 184
flow, 171
flux, 201
flux density, 201
form, 12, 49

alternating, 12
bilinear, 12
completely anti-symmetric, 12
completely symmetric, 12

fractal dimension, 53
frame, 89

dual, 89
orthonormal, 195

frame bundle, 233
free abelian group, 20
free action, 129
free associative algebra, 20
free group, 20
free module, 20
free object, 19
free product, 19
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Index 275

Frobenius’ theorem, 89
functor

contravariant, 266
covariant, 266

fundamental group, 77
fundamental representation, 127
fundamental theorem of finite abelian

groups, 7
fundamental theorem of Riemannian

geometry, 197
fundamental theorem on

homomorphisms, 22
fundamental vector field, 132

G
G-atlas, 225
G-bundle, 225
G-connection 1-form, 247
G-homomorphism, 130
G-map, 130
G-map isomorphism, 130
G-module, 131
G-set, 128
G-space, 128
G-torsor, 129
gamma matrices, 146
gauge, 217
gauge coupling parameter, 219
gauge field, 219
gauge fixing, 217
gauge group, 217
gauge potential, 219
gauge transformation, 217

automorphism, 237
neighborhood-wise, 237

gauge transformation of the first
kind, 218

gauge transformation of the second
kind, 217

Gell-Mann matrices, 148
general linear group, 123
generating set, 6
generators, 6
genus, 61
geodesic, 170
geodesic manifold, 196

geodesic normal coordinates, 170
geodesically complete, 196
geometric algebra, 34, 36
geometric multiplication, 34
geometry, 1
global gauge transformation, 218
gradation, 34
grade, 36
graded algebra, 34
graded commutativity, 34
graded derivation, 97
graded Jacobi identity, 34
graded Leibniz rule, 97
graded Lie bracket, 34
gradient, 105
grading, 34
Grassmann algebra, 28
Grassmann manifold, 260
Grassmann product, 27
Grassmannian, 260
group, 5

alternating group, 7
automorphism group, 6
finitely generated abelian group, 6
index of a group, 25
Lorentz, 126
order of a group, 7
permutation group, 7
symmetric group, 6
symmetry group, 6
torsion-free group, 7

group action, 128
group of matrices that preserve a

form, 122
group representation, 130
group splitting, 23

H
H-space, 111
Haar measure, 115
hairy ball theorem, 90
half-spinor rep, 144
handlebody, 64
Hausdorff space, 56
hedgehog theorem, 90
Heegaard decomposition, 65

 



October 20, 2017 17:37 Mathematics for Physics 9in x 6in b3077 page 276

276 Index

Heegaard splitting, 65
hermitian, 121
hermitian conjugate, 121
Hermitian form, 11, 215
Hermitian manifold, 215
Hermitian metric, 215
Hilbert space, 112
Hodge dual, 32
Hodge star operator, 32
holonomic frame, 89
holonomy algebra, 193
holonomy group, 193

restricted, 193
homeomorphism, 57
homogeneous coordinates, 127
homogeneous multivector, 36
homogeneous space, 129
homologous, 72
homology class, 72
homology group, 71
homology group with coefficients, 75
homomorphism, 2
homotopic, 58
homotopy, 58
homotopy equivalency, 58
homotopy group, 79
homotopy rel, 59
homotopy relative to, 59
homotopy type, 59
Hopf space, 111
Hopf-Rinow theorem, 196
horizontal bundle, 246
horizontal equivariant form, 242
horizontal form, 242
horizontal lift, 247
horizontal tangent space, 246
Hurewicz theorem, 80
hyperbolic space, 205

I
ideal, 24
idempotent, 8
identity, 5, 8
identity component, 112
identity section, 228
imbedding, 95

immersion, 95

index lowering, 42

index raising, 42

induced bundle, 259

infinitesimal generator, 114

inhomogeneous groups, 127

inhomogeneous Lorentz group, 126

inhomogeneous transformation, 135

injective, 2

inner automorphism, 7

inner derivative, 106

inner multiplication, 106

inner product, 10, 37

anisotropic, 13

nondegenerate, 13

pseudo, 13

inner product space, 10

integral curve, 171

integral domain, 5

interaction constant, 219

interior derivative, 106

interior product, 49

internal product, 19

internal space, 53, 217

internal sum, 19

intertwiner, 131

intertwining map, 131

intrinsic, 52

intrinsic derivative, 165

invariant subgroup, 22

invariant subspace, 133

inverse, 5

inverse function theorem, 93

invertible element, 8

involution, 113

irreducible linear representation, 133

irrep, 133

isometric connection, 196

isometry, 196

isomorphism, 2

isotropic, 13
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isotropy group, 129
Iwasawa’s theorem, 133

J
Jacobi equation, 210
Jacobi field, 210
Jacobi identity, 15
Jacobian, 93
Jacobian determinant, 94
Jacobian matrix, 93
jet, 241

order, 241
representative, 241
source, 241
target, 241

jet bundle, 241
jet manifold, 241

K
k-blade, 36
k-form, 44
k-jet, 241
Kähler manifold, 215
Kähler metric, 215
kernel, 22
Killing condition, 196
Killing equation, 196
Killing field, 196
Killing vector, 196
Klein bottle, 64, 70
Koszul formula, 198
Kronecker product, 21
k-vector, 36

L
Lagrange’s theorem, 7
left action, 128
left Haar measure, 115
left ideal, 24
left module, 9
left translation, 114
left-invariant form, 114
left-invariant vector field, 114

flow, 115
Leibniz rule, 96
Levi-Civita connection, 197

Levi-Civita symbol, 30
Lie algebra, 15

compact real form, 138
of vector fields, 88
real form, 138

Lie algebra representation, 131
Lie algebra valued form, 48
Lie bracket, 15

of vector fields, 88
Lie commutator, 15
Lie group action, 130
Lie superalgebra, 34
light-like, 13
light-like Lorentz transformation, 155
line bundle, 233
linear, 10
linear functional, 38
linear group, 119
linear representation, 130
linear space, 8
Liouville 1-form, 256
Lipschitz group, 152
little group, 129
local flow, 97
local gauge transformation, 217
local homology, 76
local one-parameter group of

diffeomorphisms, 97
local product space, 223
local section, 223
local trivialization, 223
locally trivial, 223
Lorentz boost, 126
Lorentzian signature, 13

M
Möbius band, 224
Möbius strip, 224
Majorana basis, 147
Majorana rep, 144
Majorana-Weyl rep, 144
manifold, 85

differentiable, 85
embedding, 95
topological, 57

manifold with boundary, 57
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manifold with connection, 172
matrix group, 119
matrix representation, 130
matrix-valued form, 47
Maurer-Cartan form, 114
maximal ideal, 24
method of moving frames, 89
metric, 13, 194

signature, 13
metric compatible connection, 196
metric connection, 196
metric space, 56
metric tensor, 42
metrizable, 57
Milnor’s exotic 7-spheres, 54
Minkowski space, 126
Minkowskian signature, 13
module, 9
monodromy representation, 193
monoid, 5
monomorphism, 2
Moore space, 76
morphism, 265
Morse theory, 96
mostly minuses signature, 13
mostly pluses signature, 13
multi-index notation, 30
multilinear, 11
multilinear form, 12, 49
multivector, 36
musical isomorphisms, 39

N
n-bein, 89
n-cells, 61
n-chain, 68
n-connected space, 81
n-flag, 263
n-frame, 89
n-manifold, 57
n-simple space, 81
n-simplex, 68
n-skeleton, 61
Nash embedding theorem, 196
neighborhood-wise gauge

transformation, 237

nilpotent, 8
Noether’s theorem, 203
non-coordinate frame, 89
norm, 11
normal coordinates, 170
normal matrix, 121
normal subgroup, 22
normalizer, 7
normed division algebra, 16
normed vector space, 12

O
objects, 265
obstruction, 262
octonionic conjugate, 17
octonions, 16
one-parameter group of

diffeomorphisms, 98
one-parameter subgroup, 115
one-to-one, 2
onto, 2
orbifold, 52
orbit, 129, 171
orbit-stabilizer theorem, 130
order, 7
orientable, 70, 88

time and space, 232
orientable bundle, 231
orientation n-vector, 32
orthochronous Lorentz group, 126
orthogonal, 11
orthogonal complement, 11
orthogonal decomposition, 14
orthogonal group, 123
orthogonal matrix, 121
orthogonal projection, 148
orthogonality, 14
orthonormal basis, 11
orthonormal frame, 195
outer product, 15, 27, 37

P
parabolic Lorentz transformation, 155
paracompact, 57
parallel transport, 162
parallel transporter
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on the frame bundle, 247
parallel volume form, 212
parallelizable, 90
parallelogram identity, 12
parameterization, 84
paravector, 159
parity operator, 149
particle physics signature, 13
patch, 84
path-connected space, 57
path-ordered exponential, 170
Pauli algebra, 146
Pauli matrices, 145
periodicity theorem, 142
permutation group, 7
permutation symbol, 30
permutations, 7
Pin group, 150
pinor rep, 143
Platonic solids, 110
Poincaré 1-form, 256
Poincaré conjecture, 65
Poincaré duality, 109
Poincaré group, 126
Poincaré lemma, 107
Poincaré-Birkhoff-Witt theorem, 15
polar vector, 33
polarization identity, 12
Pontryagin classes, 262
positive definite, 11
prime ideal, 24
principal bundle, 226
principal bundle map, 228
principal connection 1-form, 247
principal G-bundle, 226
principal G-connection, 247
principal homogeneous space, 129
product rule, 96
projection map, 221
projective coordinates, 127
projective representation, 135
proper Lorentz group, 126
pseudo inner product, 13, 49
pseudo-, 33
pseudo-Euclidean signature, 13
pseudo-metric, 13

pseudo-orthogonal group, 123
pseudo-Riemannian manifold, 194
pseudo-Riemannian metric, 194
pseudo-Riemannian signature, 13
pseudo-scalar, 33, 36
pseudo-tensor, 34
pseudo-vector, 33
pullback, 93
pullback bundle, 259
pure tensor, 40
pushforward, 93

Q
quadratic form, 12, 49
quaternionic conjugate, 17
quaternionic symplectic group, 124
quaternionic unitary group, 124
quaternions, 16
quotient group, 22
quotient ring, 24

R
rank, 44
rapidity, 126
real projective space, 61
real symplectic group, 123
realization, 128
reduced homology group, 75
reduced spinor rep, 144
reducible structure group, 226
reductive Lie algebra, 137
reductive Lie group, 137
regular action, 129
regular point, 95
regular value, 95
relative homology group, 75
relative homotopy group, 80
relativity signature, 13
rep, 130
repère mobile, 89
representation, 128

completely reducible, 133
representation space, 131
representative element, 22
restricted holonomy group, 193
restricted Lorentz group, 126
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reverse, 37
reversion, 37
Ricci curvature function, 203
Ricci curvature tensor, 203
Ricci function, 203
Ricci scalar, 203
Ricci tensor, 203
Riemann curvature tensor, 186
Riemann mapping theorem, 215
Riemann normal coordinates, 196
Riemann tensor, 186
Riemann-Christoffel tensor, 186
Riemannian manifold, 194
Riemannian metric, 194
Riemannian signature, 13
Riemannian connection, 197
Riesz representation theorem, 113
right action, 128
right ideal, 24
right translation, 114
ring, 5
root systems, 139
rotor group, 158

S
scalar curvature, 203
scalar field, 220
scalar matter field, 220
scalar multiplication, 9
scalar product, 10
Schur’s Lemma, 134
second Bianchi identity, 190
second countable, 57
second separation axiom, 56
section, 223
section-valued form, 243
sectional curvature, 204
Seiberg-Witten theory, 54
self-adjoint, 121
self-conjugate subgroup, 22
semi-spinor rep, 144
semidirect product, 23
semigroup, 5
semiregular action, 129
semisimple Lie algebra, 137
semisimple Lie group, 137

separable, 113
sesquilinear, 11
sharp, 39
sharply transitive action, 129
sheet, 118
similarity transformation, 121
simple group, 25
simple Lie algebra, 137
simple Lie group, 137
simple space, 81
simple tensor, 40
simplices, 68
simplicial homology, 76
simply connected, 78
simply transitive action, 129
singular homology group, 71
singular matrix, 121
singular simplex, 68
sink, 202
skeleton, 60
skew field, 16
skew-derivation, 97
skew-hermitian, 121
skew-symmetric, 121
smooth, 84
smooth bundle, 241
smooth G-bundle, 241
smooth manifold, 85
solder form, 255
source, 202
space, 55
space form, 205
space-time split, 159
spacelike signature, 13
spacetime, 126
special affine group, 127
special Clifford group, 151
special Euclidean group, 127
special linear group, 123
special orthogonal group, 123
special pseudo-orthogonal group, 123
special unitary group, 124
spectral theorem, 121
spin connection, 220
spin frame bundle, 257
Spin group, 151
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spin manifold, 258
spin structure, 257
spinc structure, 259
spinG structure, 259
spinor, 144
spinor bundle, 258
spinor field, 219, 258
spinor matter field, 219
spinor rep, 144
spinor space, 144
stabilizer subgroup, 129
stable homotopy group, 81
standard basis, 146
standard fiber, 221
standard representation, 127
standard simplex, 68
star operator, 32
Stiefel manifold, 260
Stiefel-Whitney classes, 262
Stokes’ theorem, 105
streamline, 171
structure coefficients, 16
structure constants, 16
structure group, 217, 225
submanifold, 95
subrepresentation, 133
summation convention, 10
super Lie algebra, 34
surface element, 200
surface of genus g, 64
surgery theory, 64
surjective, 2
symmetric connection, 181
symmetric group, 6
symmetrized tensor, 42
symmetry group, 6, 128, 217
symplectic form, 15, 49
symplectic manifold, 215
symplectic potential, 256
system of coordinates, 84

T
T2 space, 56
tangent bundle, 53, 87, 252
tangent frame bundle, 254
tangent mapping, 93

tangent space, 53, 85
tangent vector, 85
tautological bundle, 260
tensor, 40
tensor algebra, 27
tensor degree, 40
tensor density, 202
tensor density weight, 202
tensor direct product, 42
tensor field, 87
tensor language, 40, 49
tensor order, 40
tensor power, 27
tensor product, 20
tensor rank, 40
tensor space, 40
tensor type, 40
tensor valence, 40
tensorial form, 242
tetrad, 195
Thom’s theorem, 109
time and space orientable, 232
time reversal operator, 149
timelike signature, 13
topological space, 56
topological vector space, 112
topology, 56

coarser, 56
finer, 56
stronger, 56
weaker, 56

torsion, 7, 181
torsion coefficients, 76
torsion-free, 7
torsion-free connection, 181
torsor, 129
total Chern class, 263
total space, 221
total Whitney class, 263
trace, 121
trajectory, 171
transition function, 84, 225
transitive action, 129
transpose, 121
triangle inequality, 12
triangulation, 69
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trivector, 36
trivial bundle, 223
trivial representation, 135
trivializing neighborhoods, 221
two-sided ideal, 24

U
unimodular, 121
unit, 8
unit n-vector, 32
unital, 8
unitary, 8
unitary gauge, 218
unitary group, 124
unitary matrix, 121
unitary symplectic group, 124
unity, 8
univalent, 2
universal bundle, 259
universal covering group, 117
universal covering space, 118
universal enveloping algebra, 16
universal principal bundle, 259
universal vector bundle, 260

V
Van Kampen’s theorem, 80
vector bundle, 231
vector components, 10
vector field, 87, 219
Vector field

Lie bracket of, 88
vector length, 11, 13
vector matter field, 219
vector potential, 219
vector product, 15

vector space, 8
vector space basis, 10
vector space orientation, 10
vector-valued form, 47
vertical bundle, 242
vertical form, 246
vertical tangent, 242
vertical tangent space, 242
vielbein, 89
vierbein, 195
volume element, 32, 88, 195
volume form, 88, 195
volume pseudo-form, 88, 195

W
wedge product, 27
weight, 34
west coast signature, 13
Weyl basis, 146
Weyl curvature tensor, 205
Weyl rep, 144
Weyl representation, 146
Weyl tensor, 205
Whitehead’s theorem, 80
Whitney embedding theorem, 95
Whitney sum, 263
winding number, 76

Y
Yang-Mills field, 218
YM field, 218
Young tableaux, 140

Z
zero, 5
zero divisor, 5, 16

 


